
Solving Inequality Proofs with Large Language Models
IneqMath

Website

Pan Lu*1, Jiayi Sheng*2, Luna Lyu*1, Jikai Jin1, Tony Xia1, Alex Gu3, James Zou1

1 Stanford University 2 UC Berkeley 3 MIT | * Co-first authors Paper Dataset Code

Do large language models truly understand inequality proofs, or do
they just make guesses?
• Most existing inequality benchmarks are represented in formal

language (such as Lean and Isabelle).
• Informal reasoning is closer to human intuition.
• LLM trained on natural language corpora has potential informal

inequality solving ability.

Goal: Advance LLMs on informal inequality proving.

Introduction

To bridge formal verification with natural language, we reformulate
inequality proofs into two informal yet verifiable subtasks:
Bound Estimation and Relation Prediction.

Task Reformulation

Prove that for all a, b>0:

Proof Problem

a+ b ≥ 2
√
ab

Determine the relationship for all a, b>0:

Relation Prediction

a+ b ? 2
√

ab

Find the largest C for all a, b>0:

Bound Estimation

a+ b ≥ C
√
ab

Dataset Examples

top-performing models like o1 achieve less than 10% overall accuracy (Table 4), exposing fragile
deductive chains and a significant gap between finding an answer and constructing a rigorous proof.
Our in-depth study (�5.3) reveals that while larger model sizes correlate with improved final-answer
accuracy, their impact on overall accuracy is limited (e.g., o1 achieves only 8.0% overall accuracy).
Similarly, extending test-time computation through longer reasoning chains offers diminishing returns
in overall correctness (e.g., o1’s 8.0% overall accuracy remains unchanged when scaling maximum
completion tokens from 5K to 40K, while o3 [48] saturates around 31%). These findings suggest
that current scaling approaches are insufficient for robust deductive reasoning in I���M���. Instead,
we explore promising improvement strategies, demonstrating potential gains from methods such as
theorem-guided reasoning—by providing golden theorems (improving overall accuracy by up to 11%
for o3-mini [47]) and critic-guided self-refinement (e.g., a 5% absolute increase in overall accuracy
for Gemini 2.5 Pro [22]).
In summary, our work makes four key contributions: 1) We introduce an informal reformulation of
inequality proving, decomposing the task into two verifiable subtasks (�2). 2) We release I���M���,
an expert-curated benchmark of Olympiad-level inequalities and a training corpus enriched with
step-wise solutions and theorem annotations (�3). 3) We develop a modular LLM-as-judge framework
that rigorously evaluates both final answers and proof step soundness (�4). 4) We conduct a systematic
empirical study (�5) that exposes a pronounced gap between LLM performance and mathematical
rigor, highlighting avenues for future research.

2 Task Formalization: An Informal Perspective
Inequality proof problems require demonstrating that a specified inequality holds under given
conditions, such as proving a + b � 2

p
ab for all positive real numbers a and b. Traditionally, these

problems are formalized in proof assistants like Lean or Isabelle, represented as a tuple (S0, I, P),
where S0 is the initial state, I is the inequality, and P is a set of premises. The proof process, often
modeled as a Markov Decision Process, constructs a step-by-step solution verified by the system.
However, this formal approach demands expertise in specialized tools, while informal proofs in natural
language, though more intuitive, are difficult to verify automatically due to their unstructured nature.
To address these challenges, we propose an informal perspective that reformulates inequality proof
problems into two verifiable subtasks: bound estimation and relation prediction.

I���M��� Training Example 1: Bound Problem

Question: Find the maximal constant C such that for all real numbers a, b, c, the inequality holds:
p

a2 + (1 � b)2 +
p

b2 + (1 � c)2 +
p

c2 + (1 � a)2 � C

Solution: Applying Minkowsky’s Inequality to the left-hand side we have
p

a2 + (1 � b)2 +
p

b2 + (1 � c)2 +
p

c2 + (1 � a)2 �
p

(a+ b+ c)2 + (3 � a � b � c)2

By denoting a+ b+ c = x, we get

p
(a+ b+ c)2 + (3 � a � b � c)2 =

s

2

✓
x � 3

2

◆2

+
9
2

�
r

9
2
=

3
p
2

2
.

Minkowsky’s Inequality Theorem: For any real number r � 1 and any positive real numbers
a1, a2, . . . , an, b1, b2, . . . , bn

nX

i=1

(ai + bi)
r

! 1
r



nX

i=1

a
r
i

! 1
r

+

nX

i=1

b
r
i

! 1
r

This bound estimation task involves finding an optimal constant for a given inequality. For example,
in a + b � C

p
ab for 8a, b > 0, the objective is to find the largest C. Formally, a bound estimation

problem instance is a triple:
⇧bound =

�
f(x), g(x), D

�
, where D ✓ Rn

.

Here, f, g : D ! R are two expressions involving variables x = (x1, . . . , xn) within a specified
domain D (e.g., xi > 0,

P
xi = 1), and g(x) > 0, 8x 2 D. The goal is to determine the extremal:

C
? = sup{C 2 R : f(x) � Cg(x), 8x 2 D} or C

? = inf{C 2 R : f(x)  Cg(x), 8x 2 D}.

3

Based on the reformulation, we create the IneqMath dataset.
• Each training problem includes up to four step-wise solutions.
• 76.8% are annotated with relevant theorems.
• Test problems are crafted by lMO medalists to ensure quality.

IneqMath Dataset

Statistic Number Bnd. Rel.
Theorem categories 29 - -
Named theorems 83 - -
Training problems (for training) 1252 626 626
- With theorem annotations 962 482 480
- With solution annotations 1252 626 626
- Avg. solutions per problem 1.05 1.06 1.05
- Max solutions per problem 4 4 4
Dev problems (for development) 100 50 50
Test problems (for benchmarking) 200 96 104

Table 1: Statistics of the I���M��� dataset.

13.3%

10.8%

7.2%

7.2%

6.0%
6.0%6.0%

4.8%
3.6%

3.6%

3.6%
2.4%

2.4%
2.4%

2.4%

21.7%

Inequality Between Means13.3

Cauchy-Schwarz
Inequality10.8

Chebyshev's Inequality7.2

Schur's Inequality7.2

Convexity, Jensen's
Inequality

6.0

Hölder's Inequality6.0

Minkowski's Inequality6.0

Rearrangement Inequality4.8

Abstract Concreteness3.6

Bernoulli's Inequality3.6

Differential Calculus3.6

Maclaurin's Inequality2.4

Suranyi's Inequality2.4

Trigonometry2.4

Popoviciu's Inequality2.4

Others21.7

Figure 2: Distribution of theorem categories.
Comparison to existing datasets. As summarized in Table 2, I���M��� stands out for: (1)
providing expert-curated training and test sets, (2) offering rich annotations with step-wise solutions
and 83 grounded theorems, and (3) adopting an informal, accessible format for inequality proving
through bound estimation and relation prediction, evaluated via LLM-as-judge. This design bridges
the gap between formal proof systems and intuitive mathematical reasoning, making I���M��� a
unique resource for advancing LLM capabilities in problem solving and theorem proving.

Data Source Data Annotation Problem and Evaluation
Datasets Training Test / Dev #Theorem Solution Category Format Evaluation
INT [64] Synthesized Synthesized 35 3 Proof Formal Symbolic DSL
AIPS [63] Synthesized 7 8 3 Proof Formal Symbolic DSL
MO-INT [63] 7 Data compilation 7 7 Proof Formal Symbolic DSL
MINIF2F [82] 7 Autoformalization 7 7 Proof Formal
ProofNet [7] 7 Autoformalization 7 7 Proof Formal
FormalMATH [77] 7 Autoformalization 7 7 Proof Formal
leanWorkbook [76] Autoformalization Autoformalization 7 7 Proof Formal
Proof or Bluff [49] 7 Data compilation 7 7 Proof Informal Human judge

CHAMP [39] 7 Autoformalization 7 7 Open Informal Human judge
Putnam Axiom [23] 7 Data compilation 7 7 Open Informal Answer checking
LiveMathBench [37] 7 Data compilation 7 7 Open Informal Answer checking

I���M��� (Ours) Expert annotated Expert annotated 83 3 MC, Open Informal LLM-as-judge

Table 2: Comparison of datasets for inequality and theorem proving. I���M��� provides expert-annotated
training and test/dev sets, featuring high-quality named theorems and step-wise solutions for model development.
Unlike prior datasets using synthesis or autoformalization, I���M��� presents problems in informal language
across multiple-choice (MC) and open-ended (Open) formats, and employs LLM-as-judge for evaluation.

Potential contamination statement. To ensure rigorous evaluation, the I���M��� test set was
commissioned from IMO-level medalists to feature novel problems, minimizing prior LLM pre-
training exposure. The poor performance across models (�5.2), particularly in overall accuracy (which
demands step-wise correctness), strongly suggests that the benchmark poses a significant reasoning
challenge, regardless of any potential familiarity with the underlying mathematical concepts. We
therefore believe the I���M��� test set effectively probes novel problem-solving capabilities, and our
conclusions on current LLM limitations in rigorous inequality proving remain robust.

4 Fine-grained Informal Judges for Inequality Solving
The test split of the I���M��� dataset serves as our benchmark, comprising 200 Olympiad-level
inequality problems that challenge both humans and current LLMs. Traditional evaluation methods fall
short in this setting: expert annotation is accurate but prohibitively labor-intensive, while automated
techniques such as string matching or value equivalence fail to capture step-by-step correctness—an
essential aspect of inequality problem solving. To address this, we propose a fine-grained LLM-
as-judge framework as illustrated in Figure 3, consisting of a final-answer judge for verifying the
predicted answer (�4.1) and four specialized step-wise judges targeting common reasoning flaws
(�4.2). A solution is considered correct overall only if it passes all five judges. As shown in Table 3,
these judges achieve strong alignment with human annotations (F1 = 0.93), providing a scalable yet
reliable alternative to manual evaluation.

4.1 Final Answer Judge
LLM-generated solutions to I���M��� problems typically involve multiple reasoning steps followed
by a concluding answer statement. However, the final answer may vary in phrasing, structure, or
numeric format, especially for bound estimation problems. For example, C = 1p

2
and C =

p
2

2

5

13.3%

10.8%

7.2%

7.2%

6.0%
6.0%6.0%

4.8%
3.6%

3.6%

3.6%
2.4%

2.4%
2.4%

2.4%

21.7%

Inequality Between Means13.3

Cauchy-Schwarz
Inequality10.8

Chebyshev's Inequality7.2

Schur's Inequality7.2

Convexity, Jensen's
Inequality

6.0

Hölder's Inequality6.0

Minkowski's Inequality6.0

Rearrangement Inequality4.8

Abstract Concreteness3.6

Bernoulli's Inequality3.6

Differential Calculus3.6

Maclaurin's Inequality2.4

Suranyi's Inequality2.4

Trigonometry2.4

Popoviciu's Inequality2.4

Others21.7

Email: lupantech@gmail.com, jamesz@stanford.edu, jiayi_sheng@berkeley.edu

• One Final Answer Judge + four Step-wise Judges:

Fine-grained LLM Judges

Final Answer Judge Toy Case Judge Logical Gap Judge Approximation Judge Computation Judge

The answer is
C = 0.5

Ground Truth:
C =

1

2

Equivalent?

Yes

Final Answer Correct.

Since 1+ 2! ≥ 2 x 1 x 2,
#! + %! ≥ 2#% holds
for every #, % > 0.

Correct?

No

Used a toy case to make
a general conclusion.

Based on intuition, the
maximum value of
) #, %, * is 2.

Correct?

No
Logical gap exists as no
clear steps are given to
derive the extremum.

For simplicity, replace
all + with 3.14 and
complete the proof.

Correct?

No
Used the approximation
of + to provide a non-
rigorous proof.

Then, we have
(2 + 1)!= 3 + 2 2

Generate
Code

Correct?

Yes
Computation Correct.

Execute

Final Answer Judge Toy Case Judge Logical Gap Judge Approximation Judge Computation Judge

The answer is
C = 0.5

Ground Truth:
C = 1

2

Equivalent?

Yes

Final Answer Correct.

Since 1+ 2! ≥ 2 x 1 x 2,
#! + %! ≥ 2#% holds
for every #, % > 0.

Correct?

No

Used a toy case to make
a general conclusion.

Based on intuition, the
maximum value of
) #, %, * is 2.

Correct?

No
Logical gap exists as no
clear steps are given to
derive the extremum.

For simplicity, replace
all + with 3.14 and
complete the proof.

Correct?

No
Used the approximation
of + to provide a non-
rigorous proof.

Then, we have
(2 + 1)!= 3 + 2 2

Generate
Code

Correct?

Yes
Computation Correct.

Execute

Figure 3: Illustration of the fine-grained LLM-as-judge framework. The framework combines a
Final Answer Judge with four step-wise judges: Toy Case Judge, Logical Gap Judge, Numerical
Approximation Judge (shown as Approximation Judge), and Numerical Computation Judge (shown as
Computation Judge). A solution is considered correct only if it passes all five judges.

LLM-as-Judge Judge type Accuracy Precision Recall F1 score
Final Answer Judge Answer checking 1.00 1.00 1.00 1.00
Toy Case Judge Step soundness 0.91 0.86 0.97 0.91
Logical Gap Judge Step soundness 0.96 0.95 0.98 0.96
Numerical Approximation Judge Step soundness 0.96 0.95 0.98 0.96
Numerical Computation Judge Step soundness 0.71 0.68 0.98 0.80
Average - 0.91 0.89 0.98 0.93

Table 3: Performance metrics of LLM-as-judge framework on development set.

are mathematically equivalent but differ in form. Recent work [38] evaluates LLM outputs via
format normalization and exact string matching, without accounting for mathematical equivalence.
To address this, we propose a two-stage Final Answer Judge: it first identifies the concluding
sentence containing the predicted answer, and then performs robust equivalence checking to assess
mathematical correctness, even when the form differs from the reference. Prompt details and examples
are in �B.1.

4.2 Four Step-wised Judges
Toy Case Judge. Inequality problems in I���M��� often require reasoning over continuous domains
(e.g., all a, b, c > 0), where specific numerical examples alone are insufficient for a valid proof. LLM
frequently generalizes incorrectly from such examples—e.g., claiming an inequality holds universally
because it holds for a = 1, b = 2, c = 3. Prior work [17] flags these under a broad “logical flaw”
category, lacking granularity for targeted analysis. Our Toy Case Judge addresses this by detecting
unjustified generalization from toy examples. It prompts an LLM to flag conclusions based solely on
specific instances without broader justification. See �B.2 for prompts and examples.
Logical Gap Judge. I���M��� inequality problems often involve multi-step derivations (e.g.,
algebraic manipulation, constrained optimization, functional transformations) needing explicit
justification. LLMs, however, often skip key reasoning steps or assert conclusions without support
(e.g., stating an optimal bound without derivation). Existing step-level evaluations [68] assess validity
and redundancy but lack granularity for such logical omissions. Our Logical Gap Judge addresses
this by flagging missing transitions, unjustified claims, and vague derivations, especially in steps
involving inequality transformations or bound estimation (see �B.3 for details).
Numerical Approximation Judge. Inequality problems in I���M��� often demand exact symbolic
reasoning, where the use of numeric approximations—e.g., replacing

p
2 with 1.414—can compro-

mise mathematical rigor. However, many LLM-generated solutions resort to such approximations
in intermediate steps, leading to inaccurate or non-generalizable conclusions. To address this, we
introduce a Numerical Approximation Judge that flags inappropriate use of numeric approxima-
tions—specifically when they affect derivations or final answers. Approximations used solely for
intuition or side remarks are permitted. See �B.4 for prompt details and examples.

6

DeepSeek-R1 (Qwen-1.5B)

Gemma-2B
Llama-3.2-3B

Gemma-2-9B

Llama-3.1-8B

Qwen2.5-7B
Lamma-4-Scout

DeepSeek-R1 (Qwen-14B)

Llama-4-Maverick
QwQ-32B-Preview

Qwen2.5-Coder-32B

DeepSeek-R1 (Llama-70B)

Qwen2.5-72B

Gemini 2.5 Pro
o1

Grok 3
DeepSeek-R1

Figure 6: Model-size scaling law (Answer Acc).

DeepSeek-R1 (Qwen-1.5B)

Gemma-2B

Llama-3.2-3B
Gemma-2-9B

Llama-3.1-8B

Llama-4-Maverick

Llama-4-Scout
Qwen2.5-Coder-32B

QwQ-32B
Qwen2.5-72B

DeepSeek-R1 (Llama-70B)

o1

Gemini 2.5 Pro

DeepSeek-R1

Grok 3

Figure 7: Model-size scaling law (Overall Acc).

errors, LLMs also struggle to derive correct final answers on complex problems (�C.2.5), indicating
deeper challenges in theorem application and symbolic manipulation.

Scaling law in model size. Figure 6 shows how final-answer accuracy (which evaluates only the
correctness of the final predicted answer) scales with model size for LLMs. As model size increases,
we observe a steady improvement in answer accuracy, reflecting an empirical scaling law that larger
models are better at inferring correct bounds and inequality relationships. However, this trend does
not hold well when considering overall accuracy—which requires both a correct answer and valid
intermediate reasoning steps—as shown in Figure 7. In this latter case, the scaling curve flattens,
indicating that increased model size alone is insufficient to eliminate step-by-step reasoning errors.

5K 10K 20K 30K 40K

10

20

30

40

50

o1

o3
Gemini 2.5 Pro

Gemini 2.5 Flash

Max Completion Tokens

O
ve

ra
ll A

cc
ur

ac
y

(%
)

Figure 8: Scaling law in test-time
computation for reasoning LLMs.

Scaling law in test-time computation. Extended test-time
computation, allowing longer reasoning chains, is a common
strategy for complex problem-solving [14]. We investigated
its impact on overall accuracy in I���M��� by varying the
maximum completion tokens for reasoning LLMs. Figure 8
shows that while models like Gemini 2.5 Pro and o3 initially
improve with more tokens, performance gains saturate (e.g.,
beyond 20K tokens). This indicates that merely increasing
computational budget offers diminishing returns for achieving
rigorous, step-wise correct proofs, highlighting the need for more
than just longer thought processes.

5.4 Exploring Improvement Strategies

Figure 9: Model performance with
retrieved theorems as hints.

Retrieving relevant theorems as hints. To assess theorem-
based hints, we provide models with the top-k most frequent
theorems from our I���M��� training corpus when solving
a 40-problem test subset. As shown in Figure 9, providing
one or two such theorems decreases overall accuracy for
weaker models (e.g., Grok 3 mini, o3-mini, o4-mini), likely
due to misapplication or distraction by potentially irrelevant
information. Conversely, stronger models like Gemini 2.5
Pro benefit from these hints, suggesting advanced reasoning
is crucial to effectively use such guidance. These results
underscore the potential of theorem-guided reasoning but also
highlight the critical need for more sophisticated theorem-
retrieval mechanisms (e.g., RAG [28, 24]) to reliably enhance
LLM performance in inequality proving. Detailed experiments are available in �C.4.

Figure 10: Model performance
via self-critic as feedback.

Self-improvement via critic as feedback. Allowing an LLM to
critique and revise its own reasoning has been shown to improve
performance on complex tasks [78, 57]. To explore whether
this holds for inequality proving, we randomly sampled 40 test
problems from I���M��� and ran one round of self-critique.
As Figure 10 shows, self-critique consistently improves perfor-
mance—e.g., Gemini 2.5 Pro’s overall accuracy rises from 43% to
48%. This upward trend underscores self-critique as a promising,
supervision-free method to enhance logical rigor and solution
quality of LLMs in inequality reasoning. More details are in �C.5.

9

1. Self-improvement (critic-guided): Gemini 2.5 Pro's overall accuracy
up +5% (43%→48%) via self-critique!

2. Theorem augmentation (providing key theorem hints): Gemini 2.5
Pro's overall accuracy up another +10% with theorem guidance!

Improvement Strategies

Key Results 1: The "Soundness Gap" is Real!
• Overall Accuracy: Correct final answer + All reasoning steps sound.
• Answer Accuracy: Correct final answer, how it got there doesn't matter.

• LLMs often guess the right answer for Olympiad-level inequalities, but
their step-by-step reasoning is unsound.

Key Results 2: Bigger Isn't Always Better!
• The increased model size doesn’t enhance overall accuracy.
Key Results 3: Thinking Longer Can’t Solve Soundness Gaps!
• While models like Gemini 2.5 Pro and o3 initially improve with more

tokens, performance gains saturate (e.g., beyond 20K tokens).

Key Results
DeepSeek-R1 (Qwen-1.5B)

Gemma-2B
Llama-3.2-3B

Gemma-2-9B

Llama-3.1-8B

Qwen2.5-7B
Lamma-4-Scout

DeepSeek-R1 (Qwen-14B)

Llama-4-Maverick
QwQ-32B-Preview

Qwen2.5-Coder-32B

DeepSeek-R1 (Llama-70B)

Qwen2.5-72B

Gemini 2.5 Pro
o1

Grok 3
DeepSeek-R1

Figure 6: Model-size scaling law (Answer Acc).

DeepSeek-R1 (Qwen-1.5B)

Gemma-2B

Llama-3.2-3B
Gemma-2-9B

Llama-3.1-8B

Llama-4-Maverick

Llama-4-Scout
Qwen2.5-Coder-32B

QwQ-32B
Qwen2.5-72B

DeepSeek-R1 (Llama-70B)

o1

Gemini 2.5 Pro

DeepSeek-R1

Grok 3

Figure 7: Model-size scaling law (Overall Acc).

errors, LLMs also struggle to derive correct final answers on complex problems (�C.2.5), indicating
deeper challenges in theorem application and symbolic manipulation.

Scaling law in model size. Figure 6 shows how final-answer accuracy (which evaluates only the
correctness of the final predicted answer) scales with model size for LLMs. As model size increases,
we observe a steady improvement in answer accuracy, reflecting an empirical scaling law that larger
models are better at inferring correct bounds and inequality relationships. However, this trend does
not hold well when considering overall accuracy—which requires both a correct answer and valid
intermediate reasoning steps—as shown in Figure 7. In this latter case, the scaling curve flattens,
indicating that increased model size alone is insufficient to eliminate step-by-step reasoning errors.

5K 10K 20K 30K 40K

10

20

30

40

50

o1

o3
Gemini 2.5 Pro

Gemini 2.5 Flash

Max Completion Tokens

O
ve

ra
ll A

cc
ur

ac
y

(%
)

Figure 8: Scaling law in test-time
computation for reasoning LLMs.

Scaling law in test-time computation. Extended test-time
computation, allowing longer reasoning chains, is a common
strategy for complex problem-solving [14]. We investigated
its impact on overall accuracy in I���M��� by varying the
maximum completion tokens for reasoning LLMs. Figure 8
shows that while models like Gemini 2.5 Pro and o3 initially
improve with more tokens, performance gains saturate (e.g.,
beyond 20K tokens). This indicates that merely increasing
computational budget offers diminishing returns for achieving
rigorous, step-wise correct proofs, highlighting the need for more
than just longer thought processes.

5.4 Exploring Improvement Strategies

Figure 9: Model performance with
retrieved theorems as hints.

Retrieving relevant theorems as hints. To assess theorem-
based hints, we provide models with the top-k most frequent
theorems from our I���M��� training corpus when solving
a 40-problem test subset. As shown in Figure 9, providing
one or two such theorems decreases overall accuracy for
weaker models (e.g., Grok 3 mini, o3-mini, o4-mini), likely
due to misapplication or distraction by potentially irrelevant
information. Conversely, stronger models like Gemini 2.5
Pro benefit from these hints, suggesting advanced reasoning
is crucial to effectively use such guidance. These results
underscore the potential of theorem-guided reasoning but also
highlight the critical need for more sophisticated theorem-
retrieval mechanisms (e.g., RAG [28, 24]) to reliably enhance
LLM performance in inequality proving. Detailed experiments are available in �C.4.

Figure 10: Model performance
via self-critic as feedback.

Self-improvement via critic as feedback. Allowing an LLM to
critique and revise its own reasoning has been shown to improve
performance on complex tasks [78, 57]. To explore whether
this holds for inequality proving, we randomly sampled 40 test
problems from I���M��� and ran one round of self-critique.
As Figure 10 shows, self-critique consistently improves perfor-
mance—e.g., Gemini 2.5 Pro’s overall accuracy rises from 43% to
48%. This upward trend underscores self-critique as a promising,
supervision-free method to enhance logical rigor and solution
quality of LLMs in inequality reasoning. More details are in �C.5.

9

NeurIPS 2025 Spotlight

IneqMath stands out for:
• Expert-curated training and testing sets.
• Rich annotations with step-wise solutions and 83 grounded theorems.
• Informal format for inequality proving, evaluated by LLM judges.

Dataset Comparison

Statistic Number Bnd. Rel.
Theorem categories 29 - -
Named theorems 83 - -
Training problems (for training) 1252 626 626
- With theorem annotations 962 482 480
- With solution annotations 1252 626 626
- Avg. solutions per problem 1.05 1.06 1.05
- Max solutions per problem 4 4 4
Dev problems (for development) 100 50 50
Test problems (for benchmarking) 200 96 104

Table 1: Statistics of the I���M��� dataset.

13.3%

10.8%

7.2%

7.2%

6.0%
6.0%6.0%

4.8%
3.6%

3.6%

3.6%
2.4%

2.4%
2.4%

2.4%

21.7%

Inequality Between Means13.3

Cauchy-Schwarz
Inequality10.8

Chebyshev's Inequality7.2

Schur's Inequality7.2

Convexity, Jensen's
Inequality

6.0

Hölder's Inequality6.0

Minkowski's Inequality6.0

Rearrangement Inequality4.8

Abstract Concreteness3.6

Bernoulli's Inequality3.6

Differential Calculus3.6

Maclaurin's Inequality2.4

Suranyi's Inequality2.4

Trigonometry2.4

Popoviciu's Inequality2.4

Others21.7

Figure 2: Distribution of theorem categories.
Comparison to existing datasets. As summarized in Table 2, I���M��� stands out for: (1)
providing expert-curated training and test sets, (2) offering rich annotations with step-wise solutions
and 83 grounded theorems, and (3) adopting an informal, accessible format for inequality proving
through bound estimation and relation prediction, evaluated via LLM-as-judge. This design bridges
the gap between formal proof systems and intuitive mathematical reasoning, making I���M��� a
unique resource for advancing LLM capabilities in problem solving and theorem proving.

Data Source Data Annotation Problem and Evaluation
Datasets Training Test / Dev #Theorem Solution Category Format Evaluation
INT [64] Synthesized Synthesized 35 3 Proof Formal Symbolic DSL
AIPS [63] Synthesized 7 8 3 Proof Formal Symbolic DSL
MO-INT [63] 7 Data compilation 7 7 Proof Formal Symbolic DSL
MINIF2F [82] 7 Autoformalization 7 7 Proof Formal
ProofNet [7] 7 Autoformalization 7 7 Proof Formal
FormalMATH [77] 7 Autoformalization 7 7 Proof Formal
leanWorkbook [76] Autoformalization Autoformalization 7 7 Proof Formal
Proof or Bluff [49] 7 Data compilation 7 7 Proof Informal Human judge

CHAMP [39] 7 Autoformalization 7 7 Open Informal Human judge
Putnam Axiom [23] 7 Data compilation 7 7 Open Informal Answer checking
LiveMathBench [37] 7 Data compilation 7 7 Open Informal Answer checking

I���M��� (Ours) Expert annotated Expert annotated 83 3 MC, Open Informal LLM-as-judge

Table 2: Comparison of datasets for inequality and theorem proving. I���M��� provides expert-annotated
training and test/dev sets, featuring high-quality named theorems and step-wise solutions for model development.
Unlike prior datasets using synthesis or autoformalization, I���M��� presents problems in informal language
across multiple-choice (MC) and open-ended (Open) formats, and employs LLM-as-judge for evaluation.

Potential contamination statement. To ensure rigorous evaluation, the I���M��� test set was
commissioned from IMO-level medalists to feature novel problems, minimizing prior LLM pre-
training exposure. The poor performance across models (�5.2), particularly in overall accuracy (which
demands step-wise correctness), strongly suggests that the benchmark poses a significant reasoning
challenge, regardless of any potential familiarity with the underlying mathematical concepts. We
therefore believe the I���M��� test set effectively probes novel problem-solving capabilities, and our
conclusions on current LLM limitations in rigorous inequality proving remain robust.

4 Fine-grained Informal Judges for Inequality Solving
The test split of the I���M��� dataset serves as our benchmark, comprising 200 Olympiad-level
inequality problems that challenge both humans and current LLMs. Traditional evaluation methods fall
short in this setting: expert annotation is accurate but prohibitively labor-intensive, while automated
techniques such as string matching or value equivalence fail to capture step-by-step correctness—an
essential aspect of inequality problem solving. To address this, we propose a fine-grained LLM-
as-judge framework as illustrated in Figure 3, consisting of a final-answer judge for verifying the
predicted answer (�4.1) and four specialized step-wise judges targeting common reasoning flaws
(�4.2). A solution is considered correct overall only if it passes all five judges. As shown in Table 3,
these judges achieve strong alignment with human annotations (F1 = 0.93), providing a scalable yet
reliable alternative to manual evaluation.

4.1 Final Answer Judge
LLM-generated solutions to I���M��� problems typically involve multiple reasoning steps followed
by a concluding answer statement. However, the final answer may vary in phrasing, structure, or
numeric format, especially for bound estimation problems. For example, C = 1p

2
and C =

p
2

2

5

Formal IneqMath Evaluation

Problem: Find the smallest constant
C such that for all real numbers x and
y, the following inequality holds:

x2 + x+ y2 + y + C ≥ xy

Answer: C = 1

Proof problem: For all real numbers

x and y, please prove:

x
2 + x+ y

2 + y + 1 ≥ xy

Reformulator

import Mathlib.Data.Real.Basic

/-- For all real numbers x and y,
x^2 + x + y^2 + y + 1 ≥ x*y. -/

theorem quad_ineq (x y : R) : x^2 + x +
y^2 + y + 1 ≥ x * y := by sorry

1

Autoformalizer

Original Problem Proof Problem Lean4 Code

Reformulator Autoformalizer

Original Problem Proof Problem Lean4 Code

Problem: Let a, b, c be positive num-
bers. Consider the following inequality:

a2

b
+

b2

c
+

4c2

a
() − 3a+ b+ 7c.

Determine the correct relation.
Answer: >

Proof problem: Let a, b, c be positive

numbers. Please prove:

a2

b
+

b2

c
+

4c2

a
> −3a+ b+ 7c.

import Mathlib.Data.Real.Basic
import Mathlib.Tactic

/--For positive real numbers a, b, c: a^2/b
+ b^2/c + 4*c^2/a > -3a + b + 7c.--/

theorem inequality_abcs
(a b c : R) (ha : 0 < a) (hb : 0 < b) (
hc : 0 < c) :
a^2 / b + b^2 / c + 4 * c^2 / a > -3 *
a + b + 7 * c := by sorry

1

C.7 Evaluation on the Formalized I���M���

To expand the impact of I���M���, we conduct a formal evaluation on state-of-the-art automated
theorem proving (ATP) models. The key step in this evaluation is the formalization process, which
converts the natural language inequality problems in I���M��� into machine-verifiable Lean4 code.
As illustrated in Figures 21 and Figures 22, this process proceeds in two stages in our experiment.
First, we reformulate the inequality problems into proof-style problems using GPT-4.1 [46], ensuring
they are structured for formalization. Second, we employ the Goedel-Formalizer-V2-32B [36] to
automatically translate these reformulated proof problems into valid Lean4 representations.

Problem: Find the smallest constant
C such that for all real numbers x and
y, the following inequality holds:

x
2 + x + y

2 + y + C � xy

Answer: C = 1

Proof problem: For all real numbers
x and y, please prove:

x
2 + x + y

2 + y + 1 � xy

Reformulator

import Mathlib.Data.Real.Basic

/-- For all real numbers x and y,
x^2 + x + y^2 + y + 1 � x*y. -/

theorem quad_ineq (x y : R) : x^2 + x +
y^2 + y + 1 � x * y := by sorry

1

Autoformalizer

Original Problem Proof Problem Lean4 Code

Figure 21: Illustration of the formalization process for bound problems.

Reformulator Autoformalizer

Original Problem Proof Problem Lean4 Code

Problem: Let a, b, c be positive num-
bers. Consider the following inequality:

a
2

b
+

b
2

c
+

4c
2

a
() � 3a + b + 7c.

Determine the correct relation.
Answer: >

Proof problem: Let a, b, c be positive
numbers. Please prove:

a
2

b
+

b
2

c
+

4c
2

a
> �3a + b + 7c.

import Mathlib.Data.Real.Basic
import Mathlib.Tactic

/--For positive real numbers a, b, c: a^2/b
+ b^2/c + 4*c^2/a > -3a + b + 7c.--/

theorem inequality_abcs
(a b c : R) (ha : 0 < a) (hb : 0 < b) (
hc : 0 < c) :
a^2 / b + b^2 / c + 4 * c^2 / a > -3 *
a + b + 7 * c := by sorry

1

Figure 22: Illustration of the formalization process for relation problems.

Once formalized, we evaluate SOTA ATP models on the Lean4 problems to measure their ability to
solve inequality tasks. The results are as follows.

Model name Pass rate (Pass@32)
DeepSeek-Prover-V2-7B [55] 6.0%
Kimina-Prover-Distill-8B [4] 12.0%
Goedel-Prover-V2-32B [36] 13.0%
Goedel-Prover-SFT [35] 14.0%

Table 7: Pass@32 performance of state-of-the-art formal automated theorem proving models.

The results in Table 7 show that state-of-the-art (SOTA) formal automated theorem proving models
still suffer from the difficult inequality problems in I���M���. Even the best-performing model,
Goedel-Prover-SFT, achieves only a 14.0% pass rate, while others remain far lower. This demonstrates
that current approaches are inadequate for reliably solving the inequality-focused tasks presented in
I���M���, and further methods are needed to achieve significant improvements in handling these
challenging problems.

47

Bound Problem

Relation Problem

• IneqMath test problems are
reformulated and formalized
into Lean4 code.

• SOTA provers achieve only
a 14.0% pass rate, showing
inequality problems remain
highly challenging.

Website: https://ineqmath.github.io/

