

OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation

Shenghai Yuan^{1,4}, Xianyi He^{1,4}, Yufan Deng¹, Yang Ye^{1,4}, Jinfa Huang³, Bin Lin^{1,4}, Jiebo Luo³, Li Yuan^{1,2,†}

¹Peking University, ²Peng Cheng Laboratory, ³University of Rochester, ⁴Rabbitpre Intelligence

Introduction

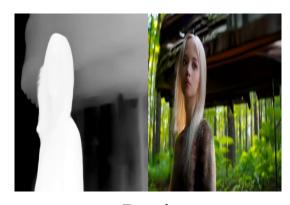
□ Development of foundational model

□ Downstream fine-tuning

Trajectory

Novel View

Pose



Depth

AnimateAnyone

Introduction

□ What is subject-to-video generation

- **□** Customized requirements
- **□** Artistic Creation

Introduction

□ image/video subject-to-video generation

Image:

PhotoMaker, InstantID, PuLID, *IP-Adapter*,

• • •

Video: ???

Input Images

a woman holding sign with glowing green text \"PuLID for FLUX\"

portrait, side view

portrait of (white-haired:1.1) celebrity

A man wearing the

sunglasses

sweater

A man with red hair

A man happily smiling, looking at the camera

Motivation

□ Key Challenges for Subject-to-Video

Challenges 1

Poor generalization: These models often perform poorly when encountering subject categories not seen during training. For instance, a model trained exclusively on Western subjects typically performs worse when generating Asian subjects.

Challenges 2

Copy-paste issue: The model tends to directly transfer the pose, lighting, and contours from the reference image to the video, resulting in unnatural outcomes.

Challenges 3

Inadequate human fidelity: Current models often struggle to preserve human identity as effectively as they do non-human entities.

OpenS2V-Eval

□ Inadequacy of existing Benchmarks

Table 1: Comparison of the Characteristics of our OpenS2V-Eval with existing Benchmarks Most of them focus on T2V and neglect the evaluation of subject naturalness. _ means suboptimal.

Benchmark	# Type	Visual Quality	Text Relevance	Motion	Subject Consistency	Subject Naturalness
Make-a-Video-Eval [81]	Text-to-Video	√	1	X	X	Х
FETV [58]	Text-to-Video	✓	✓	1	×	×
T2VScore [100]	Text-to-Video	✓	✓	1	×	×
EvalCrafter [57]	Text-to-Video	✓	/	1	×	×
VBench [36]	Text-to-Video	✓	✓	/	×	×
VBench++ [37]	Text-to-Video	1	1	1	×	×
ChronoMagic-Bench [115]	Text-to-Video	✓	/	1	×	×
ConsisID-Bench [113]	Subject-to-Video	√	1	/	1	X
Alchemist-Bench [13]	Subject-to-Video	✓	✓	1	√	×
A2 Bench [21]	Subject-to-Video	✓	✓	1	√	×
VACE-Bench [40]	Subject-to-Video	✓	1	1	<u></u>	X
OpenS2V-Eval	Subject-to-Video	✓	√	1	1	✓

OpenS2V-Eval

□ Construction pipeline

Figure 2: **The Pipeline of Constructing OpenS2V-Eval.** (Left) Our benchmark includes not only real subject images but also synthetic images constructed through GPT-Image-1 [1], allowing for a more comprehensive evaluation. (Right) The metrics are tailored for subject-to-video generation, evaluating not only S2V characteristics (e.g., consistency) but also basic video elements (e.g., motion).

OpenS2V-5M

□ Inadequacy of existing Datasets

Table 2: Comparison of the Statistics of OpenS2V-5M with existing Video Generation Datasets Most of them are inadequate for extending foundational models to subject-to-video generation task

Dataset	# Type	Resolution	Video Clips	Average Length (s)	Video Duration (h)
MSRVTT [106]	Text-to-Video	240P	10K	14.4	40
WebVid-10M [4]	Text-to-Video	360P	10M	18.7	52K
InternVid [95]	Text-to-Video	720p	234M	11.7	760K
HD-VG-130M [94]	Text-to-Video	720p	130M	4.9	178K
Panda-70M [12]	Text-to-Video	720P	70M	8.6	167K
OpenVid-1M [67]	Text-to-Video	512P	1 M	7.2	2K
Koala-36M [91]	Text-to-Video	720P	36M	17.2	172K
ChronoMagic-Pro [115]	Text-to-Video	720p	460K	234.8	30K
OpenHumanVid [45]	Text-to-Video	720P	52.3M	4.9	70K
OpenS2V-5M	Subject-to-Video	720P	5.4M	6.6	10K

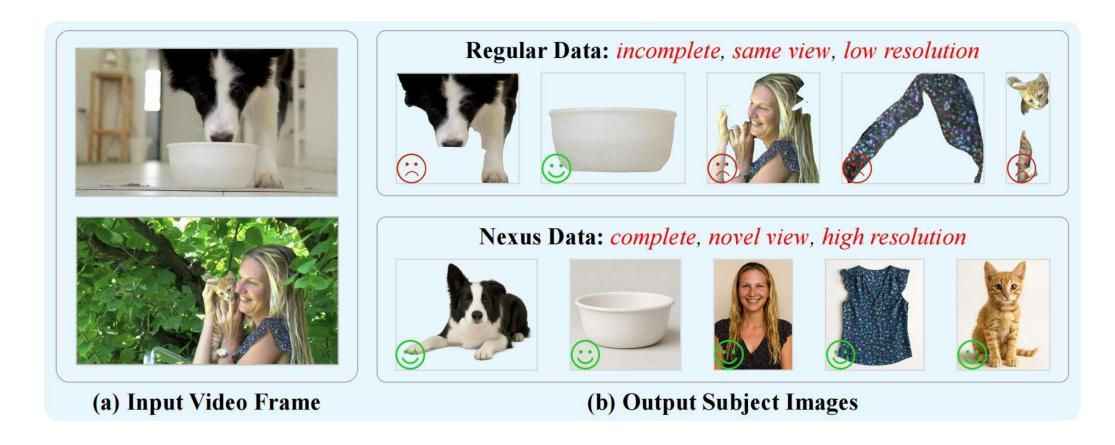
OpenS2V-5M

□ Construction pipeline

Figure 4: **The Pipeline of Constructing OpenS2V-5M.** First, we filter low-quality videos based on scores such as aesthetics and motion, then utilize GroundingDino [56] and SAM2.1 [76] to extract subject images and get Regular Data. Subsequently, we create Nexus Data through cross-video association and GPT-Image-1 [1] to address the three core issues encountered by S2V models.

OpenS2V-5M

□ Inadequacy of existing Datasets



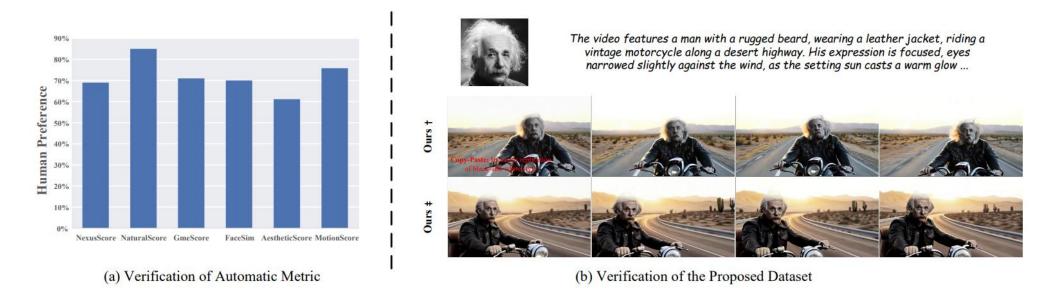


Figure 9: (a) Alignment between Automatic Metrics and Human Perception. The proposed metrics are comparable to other metrics [17, 6, 16] in terms of human preference. (2) Validation of ConsisID-Nexu-5M with † and without ‡ Nexus Data. Training are based on ConsisID [113].

Figure 6: Qualitative Comparison among Different Methods for the Open-Domain Subject-to-Video task. Existing methods handle non-human entities better than human identities, and perform better with single subject compared to multiple subjects.

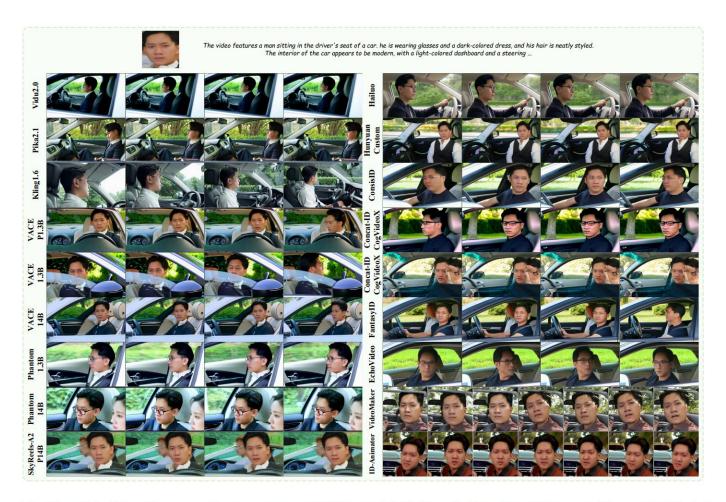


Figure 7: Qualitative Comparison among Different Methods for the Human-Domain Subject-to-Video task. They are unable to generate consistent side profiles and suffer from copy-paste issues.

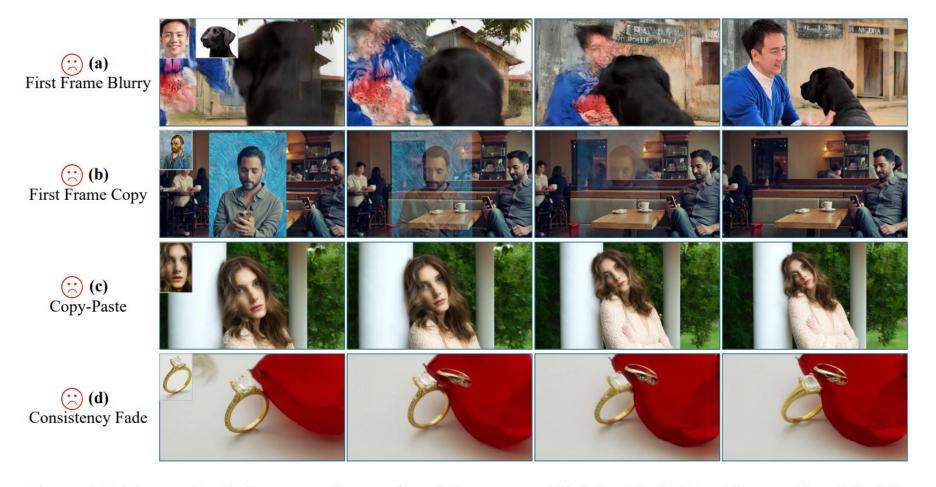


Figure 13: Example of Common Issues faced by current Subject-to-Video Generation Models. These videos are generated by Kling [43] and SkyReels-A2 [21] for demonstration purposes only.

Follow Up

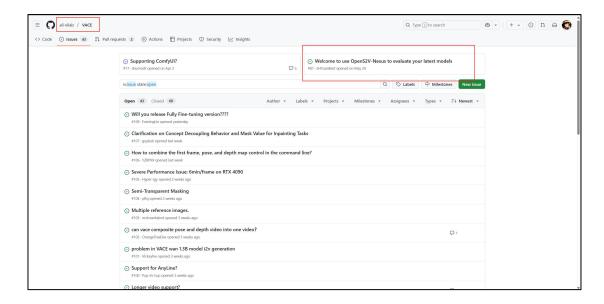
■ BestWishYsh/OpenS2V-5M
Updated 12 days ago • ± 40.5k • ♥ 12

Reach ~40,000 downloads on Hugging Face in just one month

[2] MAGREF: Masked Guidance for Any-Reference Video Generation.

[3] HuMo: Human-Centric Video Generation via Collaborative Multi-Modal Conditioning.

[1] Vace: All-in-one video creation and editing[J].



Conclusion

- □ OpenS2V-Eval: The most comprehensive S2V evaluation benchmark in the field, featuring 180 multi-domain prompts paired with dual-category test data (real/synthetic). We propose NexusScore (subject consistency), NaturalScore (naturalness), and GmeScore (text-video alignment) for precise multidimensional capability assessment.
- □ **OpenS2V-5M Dataset**: A newly open-sourced collection of 5.4 million 720P HD <image-text-video> triplets. Through cross-video relational segmentation and multi-perspective synthesis techniques, it achieves exceptional thematic diversity and annotation quality.
- Novel Insights for S2V Model Selection: Our evaluation framework enables comprehensive benchmarking of 18 leading S2V models, revealing comparative advantages across complex scenarios.

Thank you!