Diagnosing and Addressing Pitfalls in KG-RAG Datasets: Toward More Reliable Benchmarking

Liangliang Zhang¹, Zhuorui Jiang², Hongliang Chi¹, Haoyang Chen¹, Mohammed Elkoumy¹, Fali Wang³, Qiong Wu⁴, Zhengyi Zhou⁴, Shirui Pan⁵, Suhang Wang³, Yao Ma¹

¹Rensselaer Polytechnic Institute, ²University of Toronto, ³Pennsylvania State University, ⁴AT&T Chief Data Office, ⁵Griffith University

Motivation: The Diagnosis

Large language models with retrieval-augmented generation (RAG) are increasingly used for knowledge-intensive tasks. For knowledge-graph RAG (KG-RAG), progress depends heavily on benchmark datasets.

 We manually inspected over 1,000 QA pairs sampled from 16 widely used datasets, which reveals an average factual correctness rate of only 57%.

Dataset	KG	Year	Sample / Total	Correctness (%)	
WebQSP	Freebase	2016	100 / 1639	52.00	
ComplexWebQuestions	Freebase	2018	300 / 3531	49.33	
ComplexQuestions	Freebase	2016	60 / 800	63.33	
GraphQuestions	Freebase	2016	60 / 2607	70.00	
QALD	DBpedia	2018	60 / 150	61.67	
MetaQA	WikiMovies	2018	60 / 39093	20.00	
SimpleDBpediaQA	DBpedia	2018	60 / 8595	43.33	
CSQA	Wikidata	2018	60 / 27797	65.00	
LC-QuAD	DBpedia/Wikidata	2017/2019	60 / 7046	38.34	
FreebaseQA	Freebase	2019	60 / 3996	98.67	
CFQ	Freebase	2020	60 / 239357	71.67	
GrailQA	Freebase	2020	60 / 13231	30.00	
QALD-Plus	DB/Wikidata	2022	60 / 136	63.33	
KQA-Pro	FB15k+Wikidata	2022	60 / 11797	66.67	
DynamicKGQA	YAGO	2025	60 / 40000	45.00	

Pitfalls of Existing KGQA Benchmarks

Inaccurate Ground Truth Answers.

A major issue in existing KGQA benchmarks is incorrect or unreliable answers, leading to misleading evaluation and penalizing correct model predictions.

- Incorrect annotations
- Outdated answers
- Incomplete annotations

Q: "When did Michael Jordan return to the NBA?" A: 1984

Issue: 1984 is the year of his NBA debut, not his return. The correct answer should be 1995

Low-Quality or Ambiguous Questions.

Many KGQA benchmarks contain poorly constructed or underspecified questions, which reduce evaluation reliability and fail to test real reasoning ability.

- Ambiguous phrasing
- Low-complexity questions
- Unanswerable, subjective, or ill-formed questions

Q: "What does George Wilson do for a living?" A: American football player

Issue: Multiple well-known individuals share the name George Wilson (e.g., The Great Gatsby character, Dennis the Menace, several athletes).

Limitations of Exact-Match Evaluation.

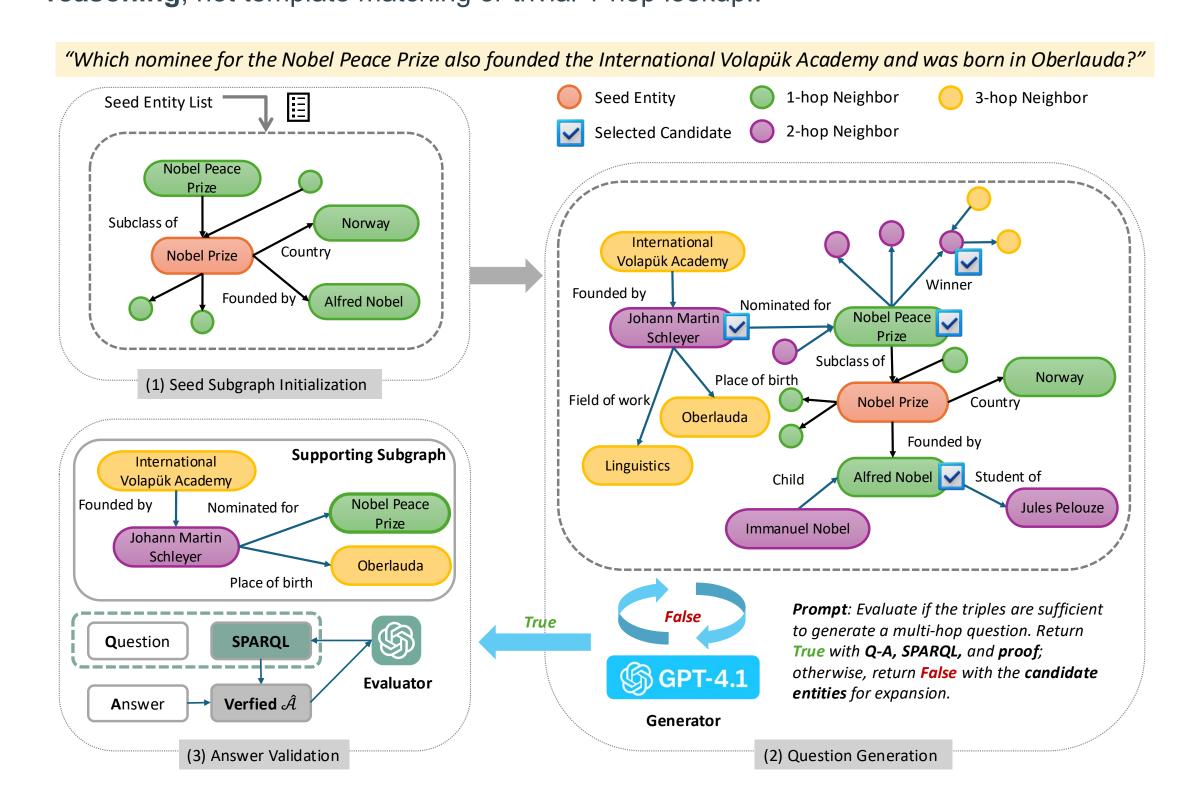
Rely on rigid exact-match criteria that fail to account for semantically correct answers expressed in different surface forms.

Q: "How big is the Earth's diameter?" A: 1.2742e+07

Issue: "12,742 km," "12,742,000 meters," "about 7,918 miles," and "approximately 12,700 kilometers." Variations in units, notation, or approximation are all reasonable.

KGQAGen Framework

Reliable, scalable, and challenging: Built from real Wikidata subgraphs and SPARQLverified for correctness and reproducibility. LLM-guided KG exploration enables largescale, diverse multi-hop question generation, providing a benchmark that tests real reasoning, not template matching or trivial 1-hop lookup...



Stage 1: Seed Subgraph Construction

• Start from a seed entity and extract a local 1-hop subgraph to define the knowledge scope and candidate reasoning space.

Stage 2: LLM-Guided Subgraph Expansion & Question Generation

- Iteratively expand the subgraph if insufficient for meaningful reasoning.
- LLM decides whether more structure is needed and then generates a question, candidate answer(s), and supporting subgraph.

Stage 3: Symbolic Validation & Refinement

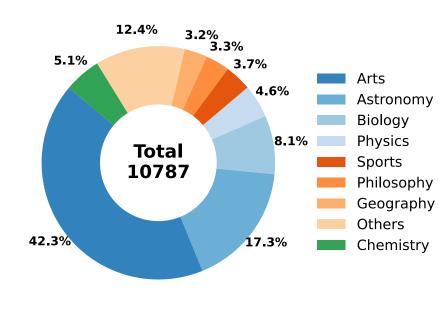
- Execute the SPARQL query to verify answer correctness.
- If a mismatch occurs, apply refinement loops; discard if unresolved.

Output: question, answer, supporting subgraph, and executable SPARQL query.

KGQAGen-10k Dataset

A 10,787-instance, SPARQL-verified, multi-hop KGQA dataset generated by KGQAGen.

- High quality: 96.3% manually verified correctness (289/300).
- Non-trivial reasoning: 98% require 2–5 hops, with 5–30 entities and 4–28 relations per supporting graph.
- **Linguistic diversity: 61.1% questions** are 16–30 words; only 7.5% are short factoids.



Topic Coverage

Experiment Results

Benchmarked KG-RAG frameworks and LLM baselines on KGQAGen-10k using a standardized 8,629 / 1,079 / 1,079 split, evaluated with exactmatch and LM-Assisted Semantic Match (LASM) scoring. **Baselines**

- RoG, ToG, PoG, GCR
- LLMs: GPT-4, GPT-4o, GPT-4.1, GPT-4o-mini, DeepSeek-Chat, LLaMA-3.1-8B-Instruct, LLaMA2-7B, Mistral-7B-Instruct-v0.2

Туре	Model	Accuracy		Hit@1		F1		Precision		Recall	
		EM	LASM	EM	LASM	EM	LASM	EM	LASM	EM	LASM
Pure LLM	LLaMA-3.1-8B-Instruct	8.87	11.91	9.27	12.42	8.97	11.98	9.27	12.42	8.87	11.81
	LLaMA2-7B	6.88	12.32	7.23	12.88	6.95	12.34	7.23	13.72	6.88	11.96
	Mistral-7B-Instruct-v0.2	24.98	32.34	26.51	34.38	25.36	33.20	26.60	34.85	24.98	32.72
	GPT-4o-mini	32.34	42.49	34.11	44.39	32.74	42.91	34.11	44.86	32.34	42.35
	GPT-4	42.38	51.37	44.95	54.49	43.01	52.32	45.13	55.33	42.38	51.48
	DeepSeek-Chat	42.48	51.84	45.51	55.24	43.17	52.64	45.60	55.79	42.48	51.78
	GPT-40	45.29	54.21	47.91	57.46	45.89	54.93	48.01	57.83	45.29	54.11
	GPT-4.1	47.43	56.96	50.05	59.96	48.03	57.72	50.05	60.33	47.43	56.95
RAG-based	RoG (LLaMA2-7B)	20.10	27.28	21.32	28.92	17.75	24.26	17.65	24.79	20.10	27.16
	GCR (LLaMA-3.1 + GPT-4o)	49.37	58.96	52.46	62.84	49.30	58.88	50.61	60.76	49.37	59.18
	ToG (GPT-4o)	49.65	59.89	52.55	63.02	50.38	60.73	53.01	64.23	49.65	59.76
	PoG (GPT-4o)	50.67	60.18	54.03	63.95	51.47	61.30	54.31	64.78	50.67	60.34
LLM-SP	LLaMA2-7B (w/ SP)	69.79	73.79	73.12	77.76	70.43	74.55	72.81	77.67	69.79	73.76
	GPT-4o (w/ SP)	82.46	84.89	89.62	92.22	84.07	86.75	89.81	93.23	82.46	84.95

Key Findings

- Retrieval is the major bottleneck: LLM-SP models dominate (e.g., GPT-4o: $54.2\% \rightarrow 84.9\%$ with supporting subgraph).
- Multi-hop reasoning failure: Even the strongest LLMs struggle to retrieve and follow correct reasoning paths.
- Semantic evaluation matters: LASM > EM across all models, showing that many answers marked incorrect under exact-match are actually correct.

Takeaways

- Existing KGQA benchmarks contain quality issues, including inaccurate ground truth answers, low-quality or ambiguous questions, and a rigid exact-match evaluation that penalizes semantically correct responses.
- > KGQAGen provides a scalable, KG-grounded, and SPARQL-verified framework that systematically overcomes these limitations and enables the construction of reliable, multi-hop benchmarks.
- > Experiments show that high-quality retrieval remains the central bottleneck in current KG-RAG systems, even when paired with advanced LLMs.

GitHub

code

dataset