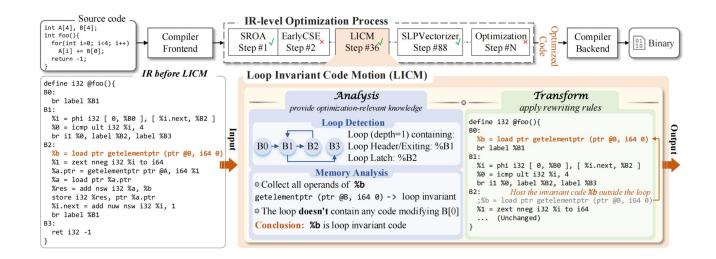


IR-OptSet: An Optimization-Sensitive Dataset for Advancing LLM-Based IR Optimizer

Zi Yang^{1,2}, *Lei Qiu*^{1,3}, Fang Lyu¹, Ming Zhong¹, Zhilei Chai², Haojie Zhou², Huimin Cui^{1,3} and Xiaobing Feng^{1,3}

¹SKLP, Institute of Computing Technology, CAS

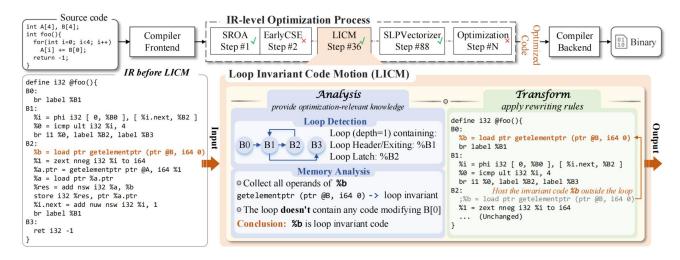
²Jiangnan University, China


³University of Chinese Academy of Sciences, Beijing, China

Compiler Optimization

- **➤** Compiler: Source Code -> Machine Code.
 - ✓ Main tasks: Translation, **Optimization**.
 - ✓ Optimization: Optimizing code to improve performance.
- Challenges in Compiler Optimization
 - ✓ Reliant on **numerous** manually crafted, rule-based transformation passes over IRs.
 - ✓ Each pass encapsulates highly specialized optimization logic.
 - -> Significant manual effort required to design and maintain.

Background


> Traditional IR-level Optimization Process

- ✓ Analysis Pass: Provide compiler-specific optimization knowledge.
- ✓ Transform Pass: Modify IR based on analysis.

Background

> Traditional IR-level Optimization Process

Current Problem:

✓ Limited accuracy in LLMs for IR optimization.

> Solution:

✓ A dataset to reflect how compilers apply optimizations across diverse program.

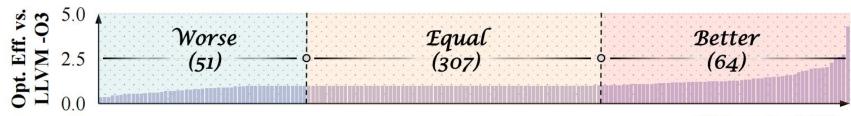
IR-OptSet: Dataset for IR Optimization

> Feature

Dataset	Samples	Source Repos	Dataset Objective	Toolchain	Avg. Eff. Opt. Steps
IR-OptSet	170K	1,704	Code Analysis, Optimized Code Generation	Correctness Verification, Performance Evaluation, Extension	25.50
SLTrans	6.9M	-	Neural Code Translation	-	21.92
ProGraML	469K	-	Code Analysis	-	13.33
ComPile	1.9T	-	Code Analysis, Optimized Code Generation	Extension	10.60

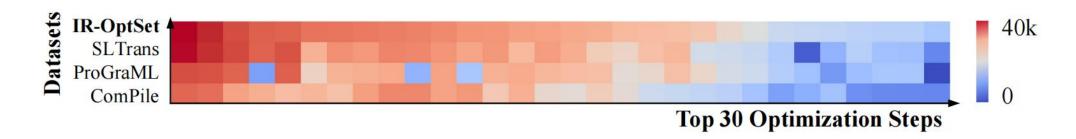
- ✓ **Optimization-Sensitive:** Targeting real-world programs that trigger various compiler optimizations.
- ✓ **Task-Oriented:** 2 tasks aligned with the traditional IR optimization process.
- ✓ Comprehensive Toolchain: 3 tools for evaluation and extension.
- ✓ Availability: https://huggingface.co/datasets/YangziResearch/IR-OptSet

Two Tasks in IR-OptSet


Input	Task		Ground Truth		
B0: store i32 0, ptr %0	Code Analysis	Dominator Tree Construction	[1] %B0 [2] %B1 [3] %B2 Roots: %B0		
br %B1 B1:		Loop Detection	Loop at depth 1 containing: %B1 <header><latch><exiting></exiting></latch></header>		
%1 = load i32, ptr %0 %2 = add i32 %1, 1 store i32 %2, ptr %0 %3 = icmp slt i32 %2, 10 br i1 %3, %B1, %B2 B2: ret void		Memory Access Analysis	; MemoryUse(3) %1 = load i32, ptr %0 %2 = add i32 %1, 1 ; 2 = MemoryDef(3) store i32 %2, ptr %0		
	Optimized Code	e Generation	B0: store i32 10, ptr %0 ret void		

Evaluation

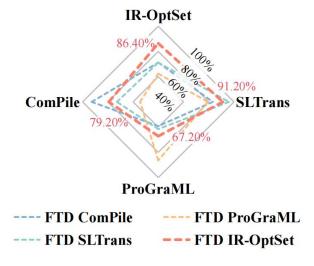
- > Setup: 3 LLMs for fine-tuning.
 - ✓ LLM Compiler FTD 7B: LLM-based IR optimizer.
 - ✓ StarCoder2-3B & Qwen2.5-Coder-1.5B: General-purpose code LLMs.
- > RQ.1 Improvements in IR analysis and optimization through fine-tuning.


*	Code Anal.		Opt. Code Gen.			Code Anal.		Opt. Code Gen.			
	EM(%)	BLEU	EM(%)	BLEU	Corr.(%)	EM(%)	BLEU	EM(%)	BLEU	Corr.(%)	
		Without Fine-Tuning					Fine-Tuned				
LLM Compiler	0.00	0.07	0.00	0.38	6.00	38.52	0.96	52.00	0.95	84.40	
StarCoder2	0.00	0.03	0.00	0.08	3.80	48.10	0.85	4.80	0.70	57.40	
Qwen2.5-Coder	0.00	0.01	0.00	0.22	12.20	11.98	0.91	2.20	0.79	43.60	

- > RQ.2 Potential to surpass traditional compiler performance.
 - ✓ LLM Compiler FTD IR-OptSet vs. LLVM 19.0.1 -O3

Evaluation

- > RQ.3 Diversity in transformations compared to existing datasets.
 - ✓ IR-OptSet vs. 3 IR-oriented datasets (SLTrans, ProGraML, and ComPile).
 - ✓ Effectiveness frequency of the top 30 most commonly used optimization steps.



-> IR-OptSet consistently triggers the highest effectiveness frequency across nearly all top-30 optimization steps.

Evaluation

- > RQ.4 Generalization in transformations compared to existing datasets.
 - ✓ IR-OptSet vs. 3 IR-oriented datasets (SLTrans, ProGraML, and ComPile).
 - ✓ Training set: IR-OptSet/SLTrans/ProGraML/ComPile.
 - -> 4 variants: LLM Compiler FTD IR-OptSet, SLTrans, ProGraML, and ComPile.
 - ✓ **Test set:** 500 samples in total, with 125 randomly selected from each dataset.

LLM Compiler	Dom. Tro	ee Const.	Code A		Mem.	Anal.	Opt. Code Gen.		
	EM(%)	BLEU	EM(%)	BLEU	EM(%)	BLEU	EM(%)	BLEU	Corr.(%)
FTD IR-OptSet	90.60	0.99	81.60	0.94	54.00	0.92	45.40	0.86	81.00
FTD SLTrans	78.00	0.95	73.00	0.92	22.60	0.38	40.60	0.86	75.40
FTD ProGraML	78.2	0.98	63.80	0.98	33.80	0.89	27.00	0.66	70.60
FTD ComPile	73.6	0.94	62.00	0.89	38.40	0.87	43.40	0.85	76.60

Thanks!

yangzi.research@outlook.com