OpenAD: Open-World Autonomous Driving Benchmark for 3D Object Detection

Paper

Toolkit Code

Online Eval (2D & MLLM)

Online Eval

Introduction

Open-World Capabilities to Evaluate:

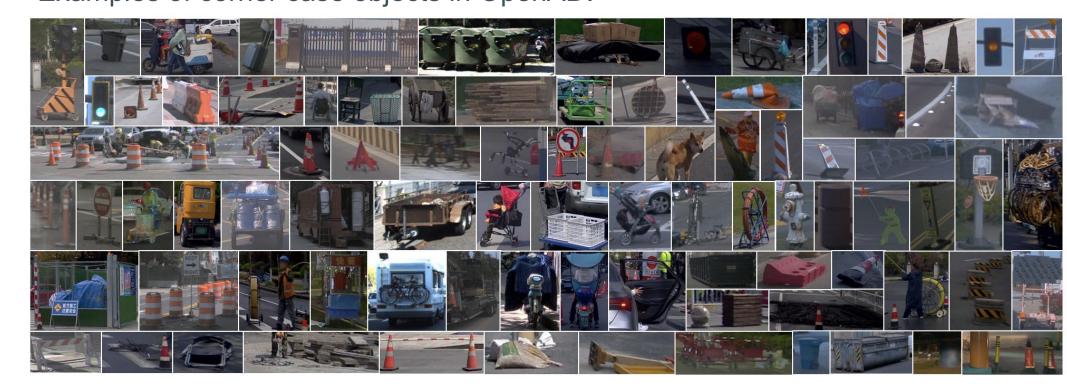
Different countries, regions, and sensor configuration

Domain generalization

Zhongyu Xia¹, Jishuo Li¹, Zhiwei Lin¹, Xinhao Wang¹, Yongtao Wang¹⊠, Ming-Hsuan Yang²

¹Wangxuan Institute of Computer Technology, Peking University ²University of California, Merced

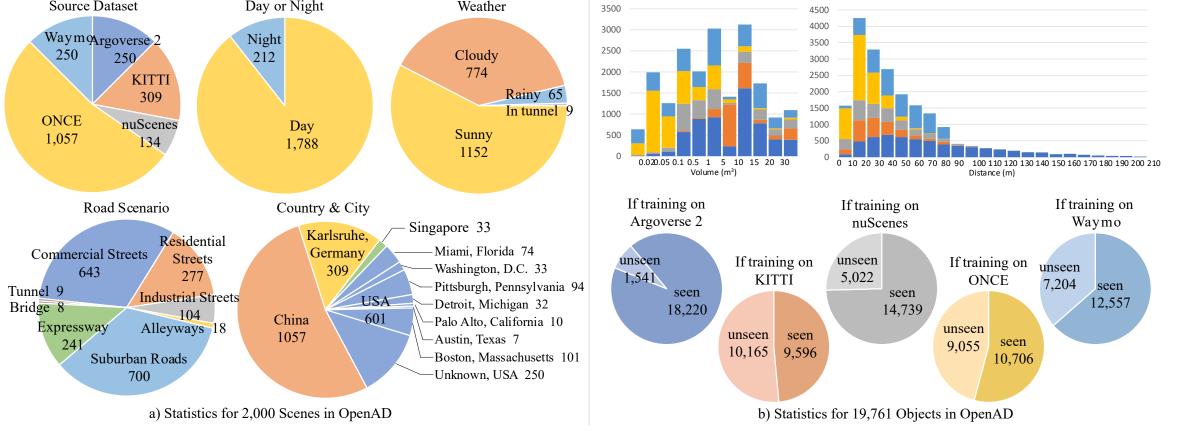
Deal with rare objects, corner cases without user prompt


Open-ended

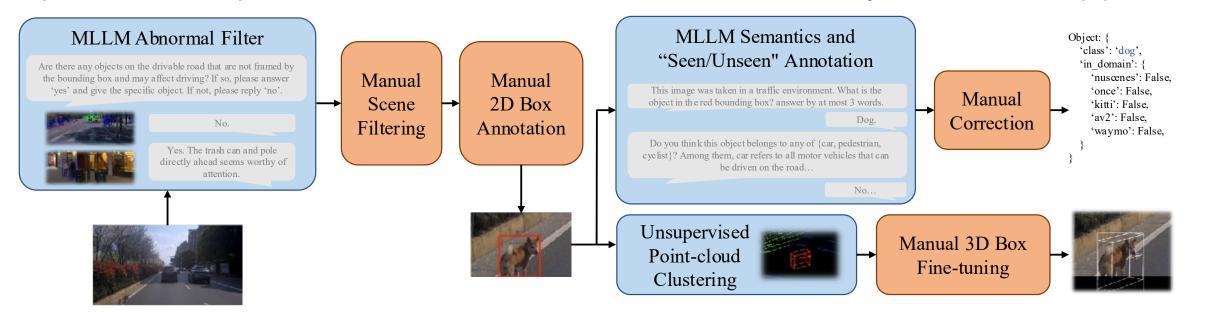
Motivation & Our Contribution:

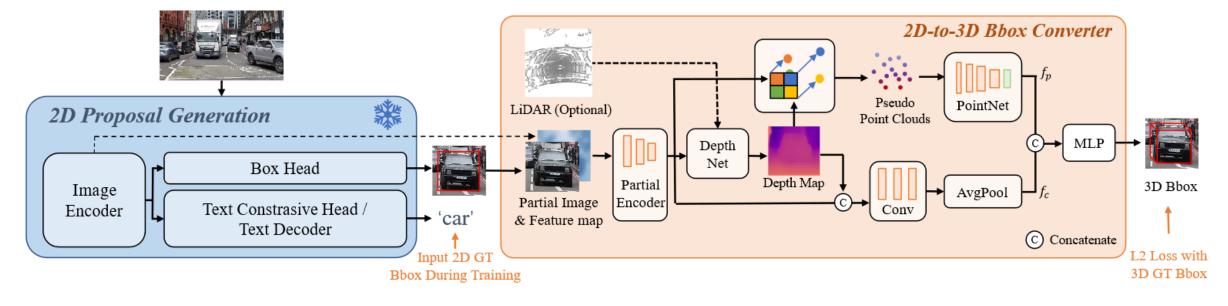
- Lack of 3D perception benchmark: We propose the first realworld autonomous driving benchmark for 3D open-world object detection, and we design a labeling pipeline integrated with MLLM.
- Lack of open-world 3D perception methods: We propose a novel vision-centric framework for 3D open-world perception, and further enhance its comprehensive abilities through General-Specialized Fusion.

Properties of OpenAD


Examples of corner case objects in OpenAD.

OpenAD is the first real-world open-world benchmark for autonomous driving 3D perception. Compared to other real-world datasets, OpenAD boasts greater category diversity and more instances.

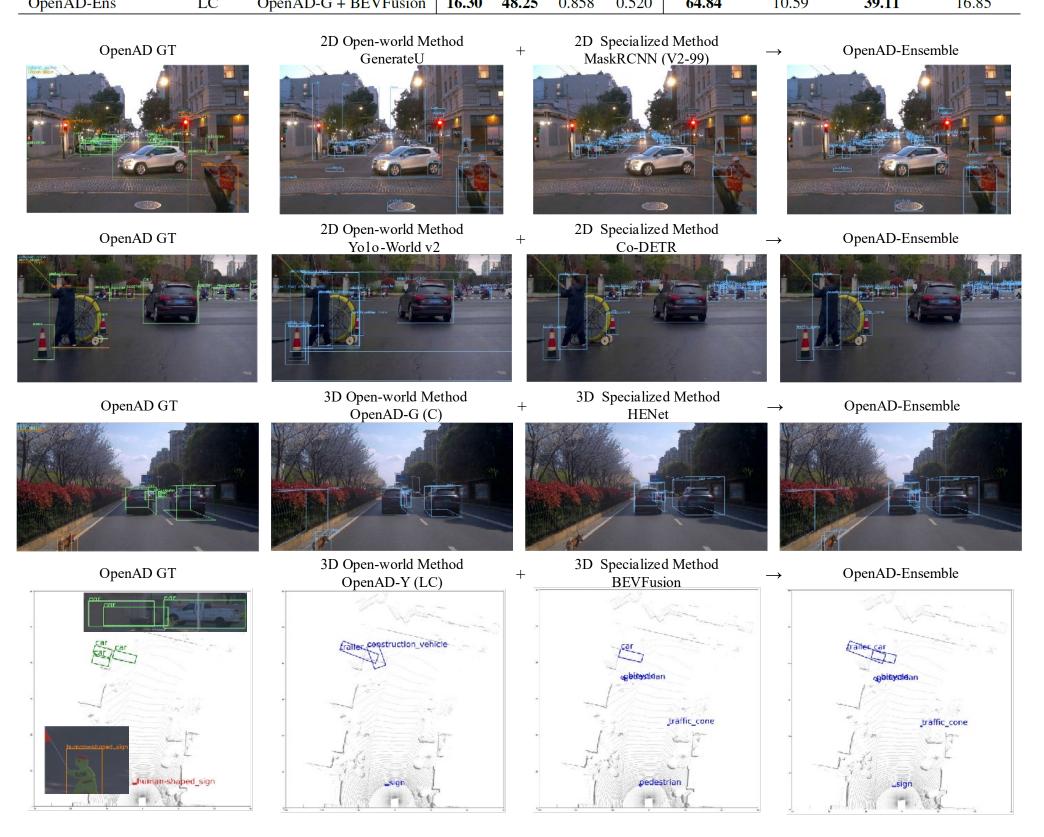

Datasets	Sensors	Real	Temporal	Scenes	Classes	Instances	GroundTruth
GTACrash [31]	Cam.	X	✓	7,720	1	24K*	Bbox(2D)
StreetHazards [25]	Cam.	X	✓	1,500	1	1.5K*	Sem. mask(2D)
Synthetic Fire Hydrants [7]	Cam.	X	X	30,000	1	30K*	Bbox(2D)
Synthetic Crosswalks [7]	Cam.	X	X	20,000	1	20K*	Bbox(2D)
CARLA-WildLife [45]	Cam. Depth	X	~	26	18	65	Inst. mask(2D)
MUAD [19]	Cam. Depth	X	X	4,641	9	30K	Sem. mask(2D)
AnoVox [5]	Cam. Lidar	X	✓	1,368	35	1.4K	Inst.mask $(2D,3D)$
YouTubeCrash [31]	Cam.	~	V	2,400	1	12K*	Bbox(2D)
RoadAnomaly21[12]	Cam.	/	X	110	1	0.1K*	Sem. mask(2D)
Street Obstacle Sequences [45]	Cam. Depth	/	✓	20	13	30*	Inst. mask(2D)
Vistas-NP[21]	Cam.	/	X	11,167	4	11 K *	Sem. mask(2D)
Lost and Found [49]	Cam.	✓	✓	112	42	0.2K*	Sem. mask(2D)
Fishyscapes[4]	Cam.	/	X	375	1	0.5K*	Sem. mask(2D)
RoadObstacle21[12]	Cam.	✓	✓	412	1	1.5K*	Sem. mask(2D)
BDD-Anomaly[25]	Cam.	/	X	810	3	4.5K	Sem. mask(2D)
CODA[33]	Cam. Lidar	✓	✓	1,500	34	5.9K	Bbox(2D)
OpenAD (ours)	Cam. Lidar	/	/	2,000	206	19.8K	Bbox(2D,3D)


Construction of OpenAD

OpenAD is built upon a semi-automated MLLM corner case discovery and annotation pipeline.

Baseline Method of OpenAD

After obtaining 2D proposals from any frozen open-world 2D object detection model, we train a 2D-to-3D Bbox Converter to predict 3D bounding boxes. It is lightweight and easy to train across datasets because each 3D object serves as a data point when training.


Experiments

Method	Backbone/Base-model	AP↑	AR↑	ATE↓	ASE↓	$AR_{\mathrm{seen}}^{\mathrm{nusc}} \uparrow$	$AR_{unseen}^{nusc} \uparrow$	$AR_{\mathrm{seen}}^{\mathrm{others}} \uparrow$	$AR_{\mathrm{unseen}}^{\mathrm{others}} \uparrow$
GLIP [34]	Swin-L	7.14	16.01	6.581	0.1352	1.83	1.28	2.33	1.05
VL-SAM [39]	ViT-H	8.46	17.50	6.630	0.1355	9.66	5.41	9.13	3.43
OWL-ViT v2 [47]	ViT-L	9.70	21.17	<u>6.284</u>	0.1461	<u>21.42</u>	4.66	18.97	<u>8.01</u>
GenerateU [15]	Swin-L	9.77	21.75	6.743	0.1360	12.74	7.18	18.79	7.31
YOLO-World v2 [14]	YOLOv8-X	10.20	23.46	7.489	0.1397	18.68	<u>10.16</u>	20.61	7.27
GroundingDino [41]	Swin-L	8.52	26.67	6.499	0.1432	20.53	4.21	21.26	7.36
MaskRCNN [24]	ResNet50	12.76	20.07	6.126	0.1359	27.77	0.00	23.41	0.07
MaskRCNN [24]	VovNetv2-99	12.32	21.09	5.746	0.1338	30.21	0.00	21.74	0.09
DETR [10]	ResNet50	12.46	20.35	6.066	0.1346	28.27	0.00	21.35	0.03
DINO [11]	ResNet50	15.24	23.41	5.679	<u>0.1258</u>	35.49	0.00	26.39	0.02
Co-DETR [72]	ResNet50	15.65	24.63	5.421	0.1270	38.82	0.00	<u>27.96</u>	0.03
Co-DETR [72]	Swin-L	16.21	27.76	5.386	0.1287	<u>45.41</u>	0.00	26.14	0.01
OpenAD-Ens	YOLO-world + MaskRCNN(V2-99)	13.28	29.74	6.726	0.1409	33.30	10.05	26.92	7.20
OpenAD-Ens	YOLO-world + Co-DETR(Swin-L)	16.94	34.38	6.457	0.1368	46.65	10.06	30.39	7.20

> Evaluate Your Open-World 2D/3D Detection Model or MLLM on OpenAD Benchmark!

Evaluation of 2D object detection (middle column, bottom) and 3D object detection methods (right column, top). Each table shows the evaluation results of open-world methods (top), specialized methods (middle), and ensemble methods (bottom) on the OpenAD benchmark. AR^{nusc} and AR^{others} demonstrate the in-domain and out-domain capabilities, respectively. AR_{seen} and AR_{unseen} showcase the detection abilities for common objects and rare objects, respectively. General-Specialized Fusion is implemented using NMS.

Method	Modality	Backbone/Base-model	AP↑	AR↑	ATE↓	ASE↓	$AR_{\mathrm{seen}}^{\mathrm{nusc}} \uparrow$	$AR_{unseen}^{nusc} \uparrow$	$AR_{\mathrm{seen}}^{\mathrm{others}} \uparrow$	$AR_{unseen}^{others} \uparrow$
OpenAD-G	С	GenerateU	6.01	12.90	1.342	0.504	11.35	3.64	15.18	3.71
OpenAD-Y	C	YOLOWorld	6.26	13.89	1.338	0.487	14.64	7.18	18.79	3.53
FnP [18]	L	SECOND	8.85	18.97	0.848	0.493	18.49	10.82	23.42	7.47
OpenAD-G	LC	GenerateU	15.14	34.46	1.056	0.649	14.54	11.15	<u>26.48</u>	<u>16.95</u>
OpenAD-Y	LC	YOLOWorld	<u>15.54</u>	<u>36.07</u>	1.063	0.646	<u>29.99</u>	<u>12.73</u>	25.88	14.17
BEVDet [27]	С	ResNet50	9.42	15.63	1.183	0.438	36.46	0.00	14.11	0.00
BEVFormer [36]	C	ResNet50	10.08	19.36	1.125	0.440	39.38	0.00	15.85	0.00
BEVFormer [36]	C	ResNet101-DCN	14.43	22.73	0.978	0.444	51.86	0.00	16.59	0.03
BEVDepth4D [26]	C	ResNet50	12.33	20.70	1.118	0.480	39.75	0.00	17.94	0.02
BEVStereo [35]	C	ResNet50	11.12	18.27	1.133	0.431	36.73	0.00	16.21	0.00
BEVStereo [35]	C	VovNetv2-99	10.58	16.03	1.118	0.388	51.69	0.00	13.05	0.01
HENet [60]	C	Vov2-99 + R50	11.58	17.48	1.070	<u>0.386</u>	52.02	0.00	14.65	0.01
SparseBEV [40]	C	ResNet50	7.61	16.97	1.142	0.435	60.04	0.00	7.48	0.02
SparseBEV [40]	C	VovNetv2-99	7.64	16.93	1.103	0.431	61.36	0.00	7.09	0.01
BEVFormer v2 [62]	C	ResNet50	14.64	33.13	1.064	0.554	56.63	0.00	<u>27.16</u>	0.08
Centerpoint [67]	L	SECOND	13.79	26.79	0.667	0.499	44.23	0.00	11.42	0.04
TransFusion-L [3]	L	SECOND	14.64	<u>34.02</u>	<u>0.653</u>	0.655	52.18	0.00	24.02	0.00
BEVFusion [37]	LC	SECOND + Dual-Swin-T	<u>15.57</u>	33.50	0.730	0.449	59.93	0.00	20.64	0.00
OpenAD-Ens	С	OpenAD-Y + HENet	12.36	24.32	1.176	0.420	54.16	7.18	23.37	3.53
OpenAD-Ens	LC	FnP + BEVFusion	16.19	42.08	0.776	0.458	61.74	10.82	28.40	7.47
OpenAD-Ens	LC	OpenAD-Y + BEVFusion	16.22	47.12	0.851	0.511	62.69	12.05	35.62	13.60
Open AD-Ens	LC	Open AD-G + BEVFusion	16.30	48.25	0.858	0.520	64.84	10.59	39.11	16.85

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2022ZD0160305).