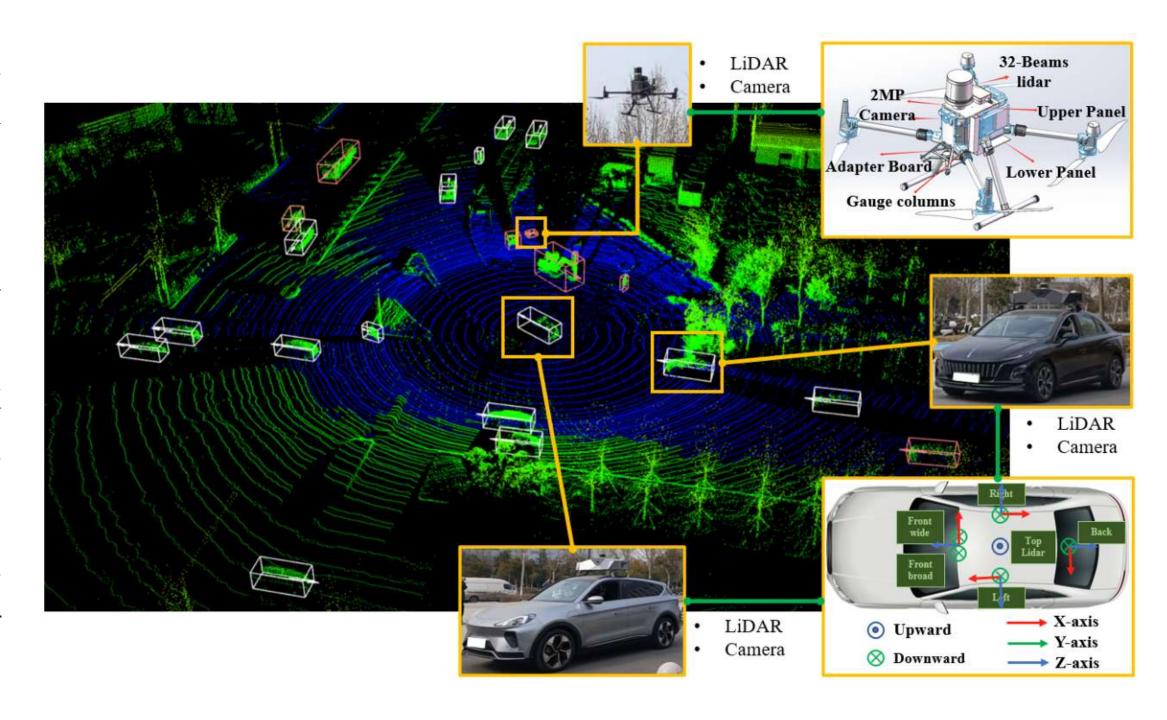


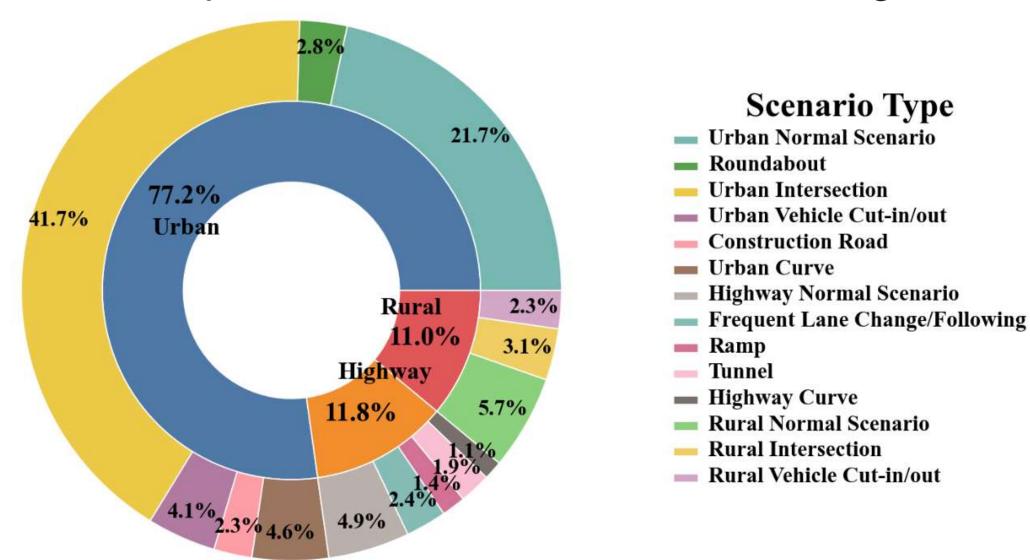
AGC-Drive: A Large-Scale Dataset for Real-World Aerial—Ground Collaboration

Yunhao Hou¹, Bochao Zou^{1,*}, Min Zhang², Ran Chen¹, Shangdong Yang², Yanmei Zhang², Junbao Zhuo¹, Siheng Chen³, Jiansheng Chen¹, Huimin Ma^{1,*}



Background & Motivation (I)

- ♦ Autonomous driving perception is limited by **occlusions** and **restricted fields of view**.
- ♦ Collaborative perception across vehicles improves coverage but remains ground-limited.
- Most existing datasets lackvertical diversity and aerialcontext.
- ♦ Understanding cross-domain perception motivates our Aerial—Ground dataset design.


Background & Motivation (II)

- ♦ UAVs offer **dynamic**, **top-down** perspectives to complement vehicle sensors.
- ♦ Existing UAV datasets are **small**, **synthetic**, or **lack LiDAR** and calibration.
- ◇ **Real-world** UAV—vehicle cooperation remains underexplored.
- ♦ AGC-Drive bridges this gap with real-world, synchronized air-ground data.

Mode	Dataset	Year	Source	Agent	Sensor	scenario types	3D boxes	Classes	MvCams	Driving	UAV-L
V2V	OPV2V [1] V2V4Real [2]	2022 2023	Sim Real	Veh Veh	C & L C & L	6	230K 240K	1 5	√ ✓	√ ✓	×
V2I	DAIR-V2X 6 V2X-Seq 7 Rcooper 8 TUMTraf-V2X 9 HoloVIC 10 V2X-R [11]	2022 2023 2024 2024 2024 2024 2025	Real Real Real Real Real Real	Veh & Inf Veh & Inf Veh & Inf Veh & Inf Veh & Inf Veh & Inf	C & L C & L C & L C & L C & L C & L	- - - -	464K - 29.3K 11.4M	10 9 10 8 3 5	× × × × ×	✓ ✓ ✓ ✓ ✓	× × × × ×
V2V&I	V2X-Sim 3 V2XSet 4 V2X-Real 5	2022 2022 2024	Sim Sim Real	Veh & Inf Veh & Inf Veh & Inf	C & L C & L C & L	5	26.6K 230K 1.2M	1 1 10	√ √ √	✓ ✓ ✓	× × ×
UAV	VisDrone [19] UAVDT [20]	2018 2018	Real Real	UAV UAV	C C	-	10.2K 841.5K	10 3	×	×	×
U2U	CoPerception-UAV [13] UAV3D [14]	2023 2023	Sim Sim	UAV UAV	C C	-	1.6M 3.3M	21 17	√	√	×
V2U	V2U-COO [17] CoPeD [16] Griffin [12]	2024 2024 2025	Sim Real Sim	Veh & UAV Veh & UAV Veh & UAV	C C & L C & L	2 4	- × -	4 1 3	× × √	✓ × ✓	× × ×
V2V&U	AGC-Drive(Ours)	2025	Real	Veh & UAV	C & L & R	14	720K	13	✓	✓	✓

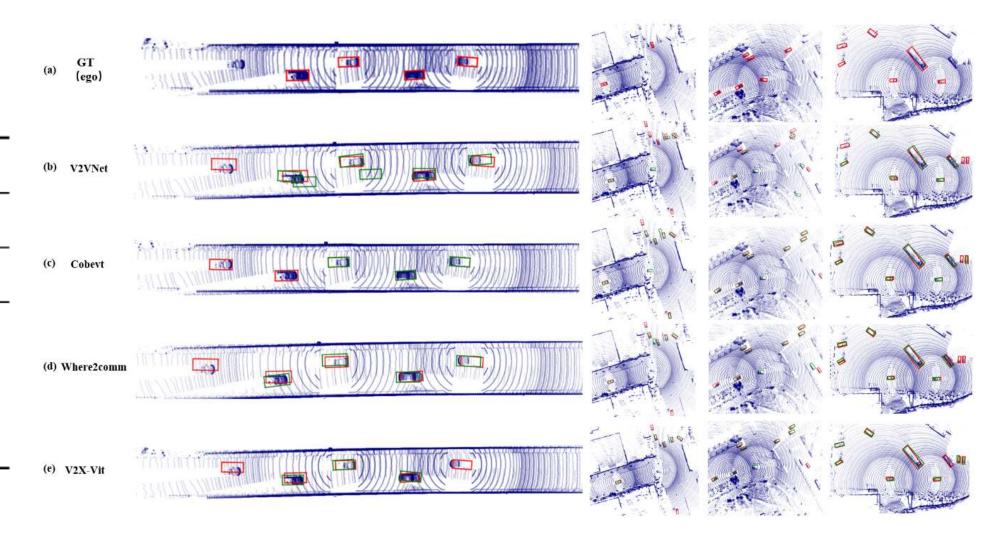
Dataset Overview

- ♦ 80 hours of driving data covering **14** diverse real-world scenarios.
- ♦ **80K** LiDAR frames, **360K** images, and 720K annotated 3D bounding boxes.
- ◆ 13 object categories with occlusion-level annotations.
- ♦ 17% of scenes involve **dynamic events** such as cut-ins and merges.

System Setup

- ◆ Data collection platform: two vehicles + one UAV.
- ♦ Each vehicle: 128-beam LiDAR, 5 cameras, GPS/IMU.
- ♦ UAV: 32-beam LiDAR, front camera, RTK GPS/IMU.
- ♦ Sensors **synchronized** via GPS time; **calibrated** by GPS/IMU and ICP alignment.

Table 2: Key Sensor Specifications in AGC-Drive.


Agent	Sensor	Sensor Model	Detail			
2*Vehicle	LiDAR	RoboSense Ruby Plus(*1)	128 beams, 10Hz capture frequency, 360°horizontal FOV, -25°to +15°vertical FOV, < 200m range			
	Camera	Sensing Cmaera(*5)	front-wide: SG8S-AR0820C-5300-G2A-Hxxx, 8MP, HFOV30°, front-broad: SG8S-AR0820C-5300-G2A-Hxxx, 8MP, HFOV120° left&right: SG2-AR0231C-0202-GMSL-Hxxx, 2MP, HFOV100°, back: SG2-AR0233C-5200-G2A-Hxxx, 2mp, HFOV121°			
	GPS&IMU	Intelligent Car Built-in GPS System(*1)	100HZ			
UAV	LiDAR	RoboSense Helios32(*1)	32 beams, 10Hz capture frequency, 360°horizontal FOV, -55°to +15°vertical FOV,< 150m range			
	Camera GPS&IMU	USB Camera(*1) DJI M350 RTK Built-in GPS System(*1)	front: RER-USBGS1200P02, 2MP, HFOV120° GPS + GLONASS + BeiDou + Galileo, 100HZ			

Benchmarks & Results

- ♦ Two main benchmarks: **AGC-V2V** (vehicle—vehicle) and **AGC-VUC** (vehicle—UAV).
- ♦ Baselines include PointPillars, V2VNet, Where2Comm, CoBEVT, and V2X-ViT.
- \triangle Metrics: mAP@0.5, mAP@0.7, \triangle UAV improvement. $\Delta_{\text{UAV}} = \frac{1}{2} \left[\left(m_{0.5}^{V2U} m_{0.5}^{V2V} \right) + \left(m_{0.7}^{V2U} m_{0.7}^{V2V} \right) \right]$
- ♦ Unified BEV representation ensures fair cross-domain comparison.

Table 3: 3D Detection Performance (%) on AGC-V2V.

Co-Mode	Model	mAP@0.5	mAP@0.7
Late	PointPillars[27]	17.7	13.5
Early	PointPillars[27]	19.6	14.1
Intermediate	V2VNet [1] Cobevt [28] Where2comm [13] V2X-ViT [4]	18.4 46.1 39.3 44.1	5.7 41.7 31.5 36.6

Benchmarks & Results

- ◆ Introducing UAV data yields **consistent mAP improvements** (+0.6–11.5%).
- ◇ Performance gain demonstrates complementary aerial-ground perspectives.
- ♦ AGC-Drive sets **new standard** for airground collaborative perception benchmarks.

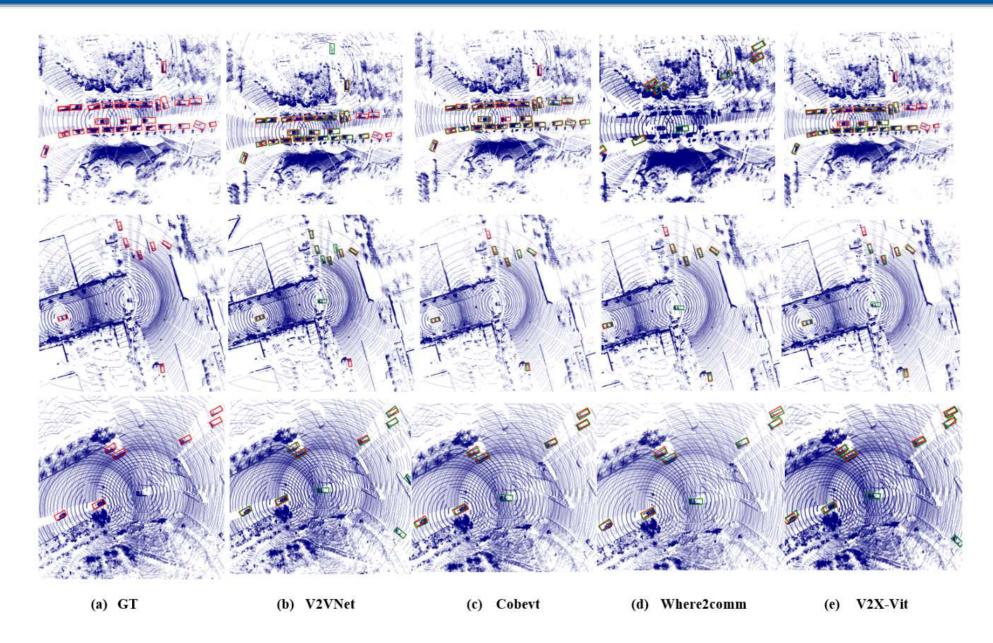


Table 4: 3D Detection Performance (%) on AGC-VUC.

Co-Mode	Model	V	2V	V2U			
Co-Mode	Model	mAP@0.5	mAP@0.7	mAP@0.5	mAP@0.7	Δ_{UAV}	
	V2VNet [1]	30.5	14.6	40.1	27.9	+11.5	
Intermediate	Cobevt [28]	42.3	36.9	42.9	37.5	+0.6	
intermediate	Where2comm [13]	42.6	30.7	44.2	32.0	+1.5	
	V2X-ViT [4]	38.3	28.7	42.6	33.9	+4.8	

Limitations & Future Work

- ♦ UAV LiDAR sparsity limits fine-grained perception of small objects.
- ♦ Plan to adopt higher-resolution LiDAR and multi-UAV collaboration.
- ♦ Expand dataset to various weather, lighting, and traffic conditions.
- ♦ Integrate radar and driver-state data for richer multimodal perception.

uncommon category

diverse application scenarios

diverse weather conditions

corner case