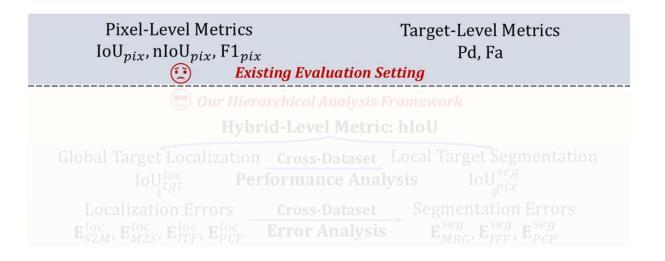


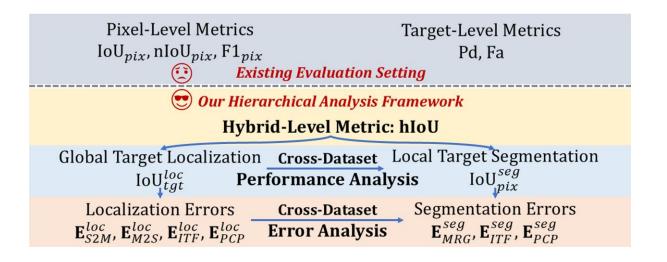
Rethinking Evaluation of Infrared Small Target Detection

Youwei Pang^{1,3}, Xiaoqi Zhao², Lihe Zhang¹⊠, Huchuan Lu¹ Georges El Fakhri², Xiaofeng Liu², Shijian Lu³

> ¹Dalian University of Technology ²Yale University ³Nanyang Technological University



Limitations Of Current IRSTD Evaluation



- *Metric Design*: Existing methods rely on fragmented pixel- and target-level specific metrics, which fails to provide a comprehensive view of model capabilities.
- **Error Analysis**: An excessive emphasis on overall performance scores obscures crucial error analysis, which is vital for identifying failure modes and improving real-world system performance.
- *Dataset-specific*: The field predominantly adopts dataset-specific training-testing paradigms, hindering the understanding of model robustness and generalization across diverse infrared scenarios.

Our Contributions

- Expose limitations in current IRSTD evaluation protocols and *propose a hierarchical analysis framework*.
- Introduce a hybrid-level metric capturing IRSTD performance across target and pixel levels.
- Reveal limited *cross-dataset generalization* of IRSTD algorithms through detailed evaluation.
- First to *systematically analyze errors* in IRSTD by quantifying model limitations under our metric.
- Develop a universal and comprehensive evaluation toolkit to advance IRSTD research.

Hierarchical Intersection over Union (hIoU)

- Evaluation practices in current IRSTD studies typically focus on either isolated pixel-level or target-level similarity measurements between predictions and GTs.
- We propose a new hybrid-level metric, *i.e.*, hierarchical Intersection over Union (hloU), which hierarchically combines both global target-level localization and local pixel-level segmentation performance:

$$\text{hIoU} = \text{IoU}_{tgt}^{loc} \times \text{IoU}_{pix}^{seg} = \frac{\sum_{i=1}^{K} |\text{TP}_{tgt}^{[i]}|}{\sum_{i=1}^{K} \left| \text{TP}_{tgt}^{[i]} \right| + \left| \text{FP}_{tgt}^{[i]} \right| + \left| \text{FN}_{tgt}^{[i]} \right|} \times \frac{\sum_{(T_{G}^{m}, T_{P}^{n} \in \text{TP}_{tgt})} (T_{G}^{m} \cap T_{P}^{n}) / (T_{G}^{m} \cup T_{P}^{n})}{\sum_{i=1}^{K} \left| \text{TP}_{tgt}^{[i]} \right|}$$

Overlap Priority with Distance Compensation

16 Compensation match $\hat{A} = Assignment(\hat{D});$

17 $\hat{S}_{TP}, \hat{S}_{FN}, \hat{S}_{FP} \leftarrow \hat{A} \cap \hat{\mathbb{I}};$ 18 $S_{TP} = S_{TP} \cup \hat{S}_{TP};$

19 $S_{FN} = S_{FN} \setminus \hat{S}_{TP}$;

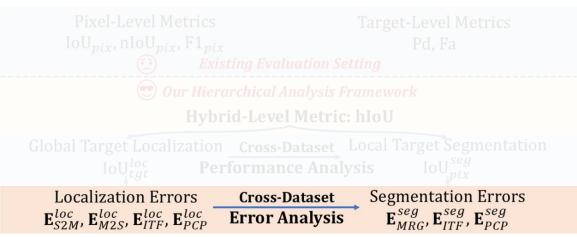
20 $S_{FP} = S_{FP} \setminus \hat{S}_{TP}$;

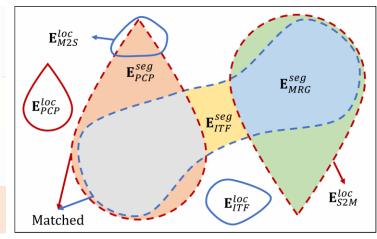
- Conventional IRSTD evaluation methods depend on strict distance-only matching, which often misjudges offset or fragmented predictions.
- The proposed OPDC (Overlap Priority with Distance Compensation) strategy first prioritizes overlap-based matching to ensure shape coherence, then applies distance compensation to handle small or low-overlap cases.
- ☐ This hierarchical design achieves more intuitive and robust target-level matching by combining morphological alignment with spatial proximity.

```
Algorithm 1: OPDC Matching Strategy
    Input: \{T_G^m\}_n^M: the mask set of M targets extracted from GT map G; \{T_P^n\}_n^N: the mask set of N targets
              extracted from prediction map P; MAX: a extremely large value used to avoid the algorithm
              choosing irrational matches;
   Output: S_{TP}: the matched index pair set; S_{FN}: the unmatched GT target index set; S_{FP}: the unmatched
                predicted target index set;
   // 1. Overlap Priority Constraint
 1 Valid indicator \mathbb{I} \in \mathbb{R}^{M \times N}, \mathbb{I}_{m,n} \in \{0,1\}, \mathbb{I}_{m,n} = 0, \forall m,n;
 2 Distance matrix D \in \mathbb{R}^{M \times N}, D_{m,n} = \text{MAX}, \forall m, n;
 3 for m=1 to M do
         for n=1 to N do
              \begin{array}{l} D_{m,n} = \mathtt{EuclideanDistance}(T_G^m, T_P^n); \\ \mathbf{if} \ |T_G^m \cap T_P^n|/|T_G^m \cup T_P^n| \geq 0.5 \ \mathbf{then} \ \mathbb{I}_{m,n} = 1; \end{array}
 7 Initial match A = Assignment(D);
                                                                          // scipy.optimize.linear_sum_assignment[5]
 8 S_{TP}, S_{FN}, S_{FP} \leftarrow A \cap \mathbb{I};
                                                                  // Consider only pairwise relations that satisfy constraints.
   // 2. Distance-based Compensation
 9 Valid indicator \hat{\mathbb{I}} \in \mathbb{R}^{|S_{FN}| \times |S_{FP}|}, \hat{\mathbb{I}}_{m,n} \in \{0,1\}, \hat{\mathbb{I}}_{m,n} = 0, \forall m, n;
10 Distance matrix \hat{D} \in \mathbb{R}^{|S_{FN}| \times |S_{FP}|}, \hat{D}_{m,n} = \text{MAX}, \forall m, n;
11 for m = 1 to |S_{FN}| do
         for n=1 to |S_{FP}| do
              if D_{S_{FN}^m,S_{FN}^n} < 3 then
                                                                                                       // Following the setting in [17].
                    \hat{D}_{m,n} = D_{S_{FN}^m, S_{FN}^n};
```

// scipy.optimize.linear_sum_assignment[5]

// Construct final unmatched predicted target index set.


// Construct final unmatched GT target index set.


// Construct final matched index pair set.

Systematic Error Analysis

Error types for three predicted and three GT targets. Blue contours denote predictions and red contours denote GT. Under our *OPDC strategy*, only the middle prediction is matched to a GT and all others remain unmatched. We categorize prediction errors into two levels:

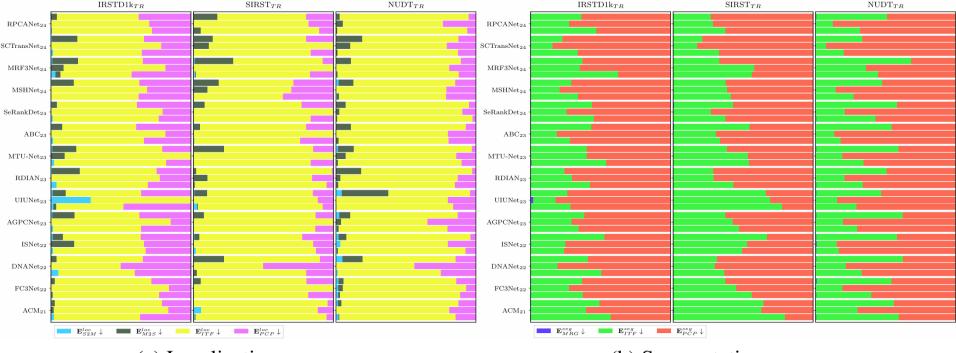
$$\mathbf{E}^{loc} = 1 - \text{IoU}_{tgt}^{loc} = \mathbf{E}_{S2M}^{loc} + \mathbf{E}_{M2S}^{loc} + \mathbf{E}_{ITF}^{loc} + \mathbf{E}_{PCP}^{loc}$$

2. pixel-level segmentation error

$$\mathbf{E}^{seg} = 1 - \text{IoU}_{pix}^{seg} = \mathbf{E}_{MRG}^{seg} + \mathbf{E}_{ITF}^{seg} + \mathbf{E}_{PCP}^{seg}$$

Cross-dataset Performance Comparison

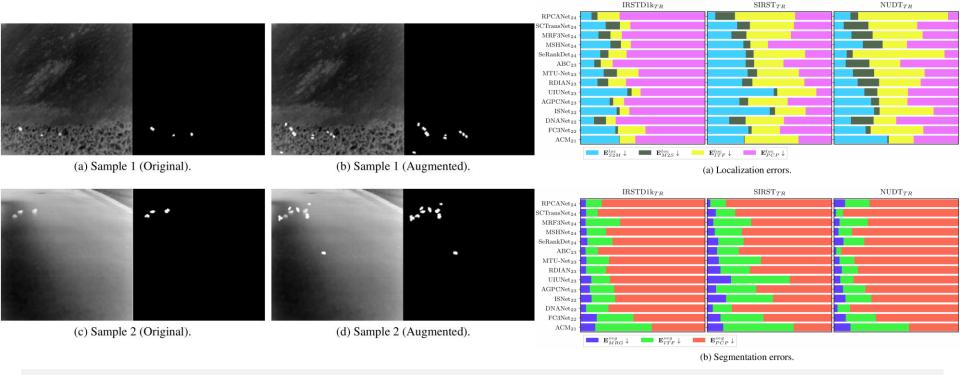
	ACM ₂₁ [9] F	$C3Net_{22}$ [37]	$DNANet_{22}\left[17\right]$	$ISNet_{22}$ [38]	$AGPCNet_{23}$ [39]	$UIUNet_{23}$ [31]	$RDIAN_{23}$ [26] 1	MTU-Net ₂₃ [30]	ABC_{23} [22]	SeRankDet ₂₄ [6]	$MSHNet_{24}$ [20]	$MRF3Net_{24}$ [41]	SCTransNet ₂₄ [34]	$RPCANet_{24}$ [29]	
Params.	0.5M	6.9M	4.7M	1.1M	12.4M	50.5M	0.1M	4.1M	73.5M	108.9M	4.1M	0.5M	11.2M	0.7M	
FLOPs	2.0G	10.6G	56.1G	121.9G	327.5G	217.9G	14.8G	24.4G	332.6G	568.7G	24.4G	33.2G	67.4G	179.7G	
	Trained on IRSTD1 k_{TR} [38].														
$-$ IoU _{pix} \uparrow	0.439	0.358	0.637	0.578	0.605	0.570	0.603	0.610	0.624	0.642	0.650	0.636	0.644	0.608	
$\begin{array}{c} \text{RST} \\ \text{MIOT} \\ $	0.476	0.531	0.625	0.518		0.600	0.605	0.607	0.595	0.621	0.620	0.630	0.622	0.579	
$\mathbb{F}1_{pix} \uparrow$	0.610	0.527	0.778	0.733	0.754	0.726	0.753	0.757	0.768	0.782	0.788	0.777	0.783	0.756	
<u></u> Pd↑	0.798	0.865	0.912	0.919	0.916	0.906	0.902	0.929	0.916	0.926		0.899	0.912	0.886	
-OPDC	0.835	0.875	0.916	0.926	0.919	0.912	0.912	0.939	0.919	0.933	0.936	0.909	0.923	0.896	
$Fa \times 10^6 \downarrow$	95.178	237.365	13.854	13.266	15.354	51.147	21.503	28.012	16.815	44.638	11.539	17.441	16.834	28.145	
¥ +OPDC	61.187	233.266	10.476	11.444	11.862	44.277	17.062	23.647	13.475	41.108	7.686	12.146	10.476	21.844	
hIoU↑	0.356	0.383	0.557	0.443	0.496	0.530	0.511	0.493	0.508	0.520	0.549	0.553	0.537	0.470	
$IoU_{pix} \uparrow $	0.472	0.234	0.676	0.712		0.696	0.658	0.701	0.708	0.734		0.752	0.629	0.543	
$ \begin{array}{c} \text{InJo} p_{ix} \\ \text{EV} \\ \text{EV}$	0.567	0.595	0.733	0.719		0.688	0.735	0.749	0.737	0.742		0.763	0.686	0.676	
Γ F1 _{pix} \uparrow	0.642	0.380	0.807	0.832		0.821	0.794	0.824	0.829	0.847		0.858	0.772	0.704	
E Pd↑	0.908	0.872	0.963	0.982		0.963	0.963	0.982	0.972	0.982		0.982	0.963	0.927	
S +OPDC	0.927	0.881	0.963	0.982	0.991	0.982	0.963	1.000	0.982	0.982		0.982	0.963	0.927	
≅ Fa×10 ⁶ ↓	127.650	932.797	3.754	5.632	2.560	86.351	17.407	42.152	22.526	17.236	11.946	4.608	20.820	124.066	
101 00	121.165	932.456	3.754	5.632		30.376	17.407	38.397	21.844	17.236	11.946	4.608	20.820	124.066	
hIoU↑	0.418	0.390	0.687	0.674	0.682	0.644	0.645	0.693	0.672	0.684	0.623	0.694	0.596	0.598	
$IoU_{pix} \uparrow$	0.331	0.288	0.504	0.443	0.468	0.450	0.441	0.416	0.469	0.494	0.463	0.512	0.377	0.291	
	0.452	0.443	0.627	0.538		0.541	0.554	0.528	0.582	0.581	0.561	0.609	0.502	0.430	
	0.498	0.448	0.670	0.614	0.638	0.620	0.612	0.588	0.638	0.661	0.633	0.678	0.548	0.451	
² Pd↑	0.757	0.752	0.848	0.759	0.785	0.836	0.804	0.769	0.808	0.820		0.815	0.748	0.701	
+OPDC	0.792	0.787	0.886	0.806	0.850	0.867	0.871	0.857	0.841	0.832	0.843	0.862	0.818	0.722	
$5 \text{ Fa} \times 10^6 \downarrow$	253.092	273.488	121.206	71.920	40.690	114.695	71.869	96.690	133.464	63.883	65.562	43.844	110.728	190.989	
Z +OPDC	236.308	266.469	114.899	57.068	31.789	106.049	62.002	79.753	124.563	59.916	47.913	35.502	92.723	187.581	
hIoU↑	0.274	0.333	0.526	0.434	0.456	0.457	0.408	0.366	0.484	0.466	0.445	0.484	0.393	0.344	


We benchmark 14 recent IRSTD methods using both conventional metrics and our hierarchical framework. Results reveal inconsistencies: models like MSHNet achieve top scores in standard metrics but underperform in holistic performance (hloU), while DNANet ranks higher overall due to more balanced segmentation and localization. Incorporating the OPDC strategy further improves recall by addressing overly strict distance-only matching, demonstrating the value of shape- and distance-aware evaluation.

Rethinking Evaluation of Infrared Small Target Detection, Youwei Pang, Xiaoqi Zhao, Lihe Zhang, Huchuan Lu, Georges El Fakhri, Xiaofeng Liu, Shijian Lu, 2025

Cross-dataset Error Ratio Analysis

(a) Localization errors.


(b) Segmentation errors.

Our fine-grained error decomposition exposes specific weaknesses that conventional metrics obscure. The analysis highlights specific localization and segmentation errors (ITF & PCP) as major contributors, emphasizing the importance of detailed error breakdowns for understanding model limitations and guiding robust algorithm development.

Synthetic Data Experiment

We introduce IRSTD1 k_{TE}^{AUG} , a synthetic dataset built from IRSTD1k using copy-paste augmentation to *increase target* density and diversity while preserving scene coherence. It provides challenging, high-density test cases. Results show that existing models degrade significantly on this dataset, exposing their weaknesses in complex scenarios.

Thanks!

