

Through the Lens: Benchmarking Deepfake Detectors Against Moiré-Induced Distortions

Razaib Tariq*, Minji Heo*, Simon S.Woo* and Shahroz Tariq*

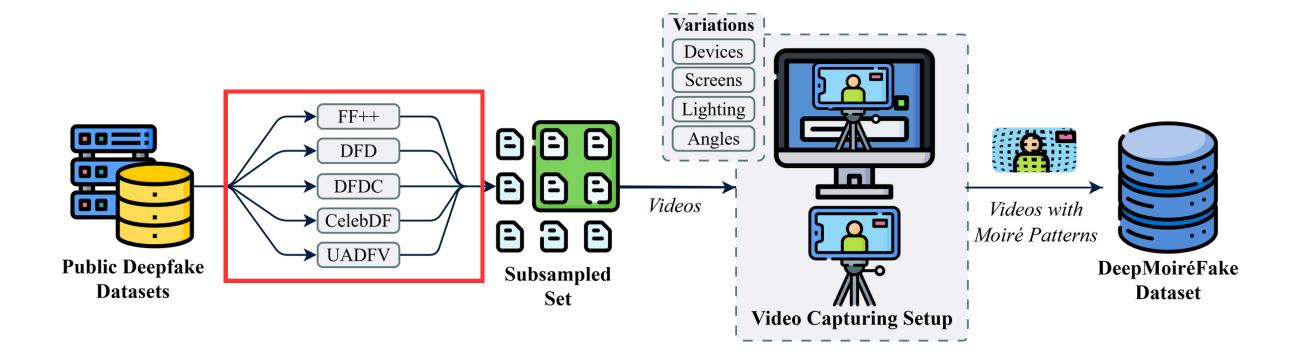
* Equal Contribution

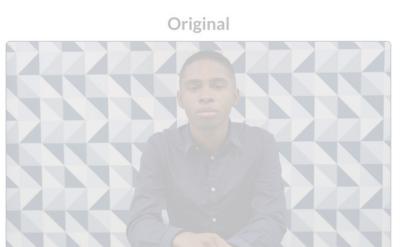
* Corresponding Author

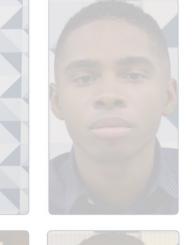
Background

- Various Artifacts affect deepfakes in Real-World settings.
- Our Work focuses on Moiré Patterns.
- The interference is caused by the smartphone camera and the screen.

Background

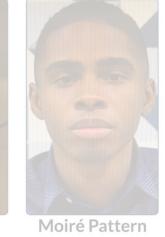

- Various Artifacts affect deepfakes in Real-World settings.
- Our Work focuses on Moiré Patterns.
- The interference is caused by the smartphone camera and the screen.



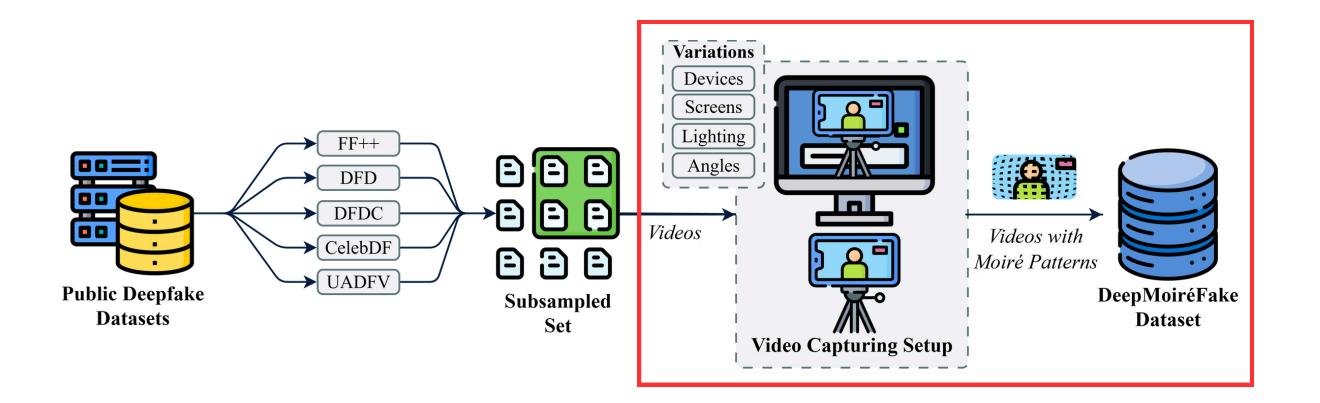


DeepMoiréFake Generation Pipeline

- We focus on five datasets that cover various ethnicities and genders.
- We captured the moiré pattern under 2 devices, 4 screens, 2 lightning, and 4 different camera angles. Original
- A 4x zoomed image of both the original and the Moiré.

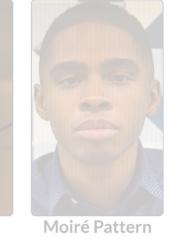


(4x Zoomed)


Camera-captured with Moiré Pattern

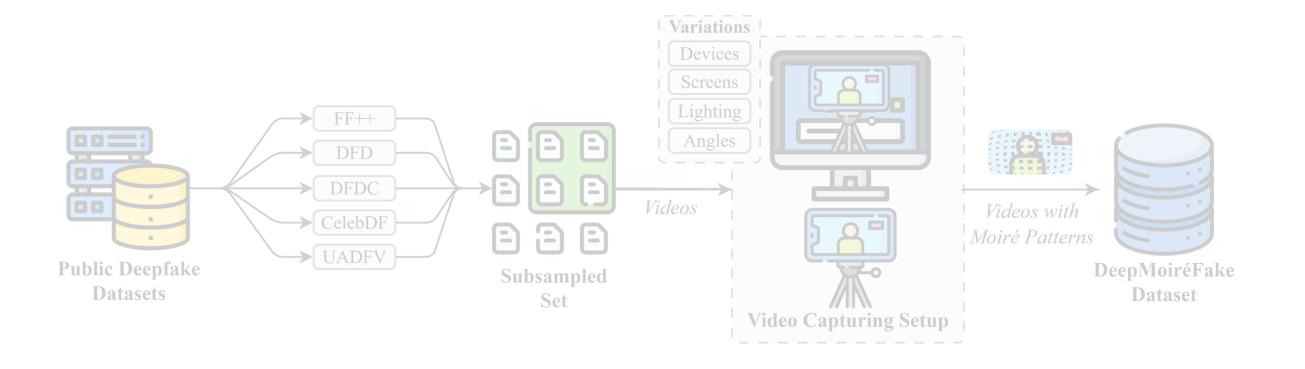
(4x Zoomed)

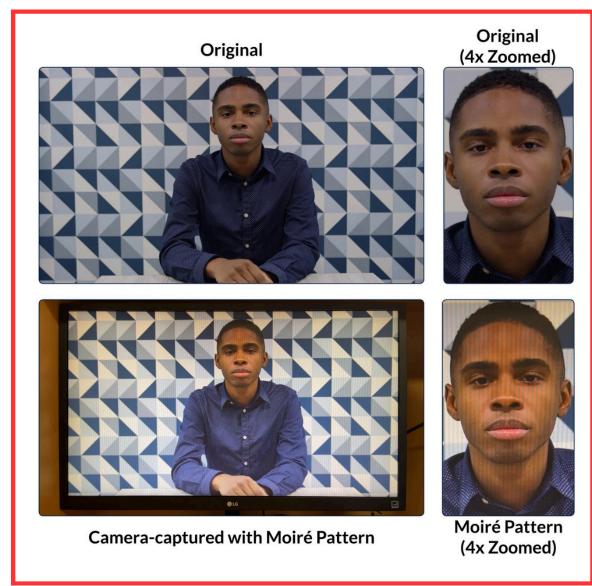
DeepMoiréFake Generation Pipeline


- We focus on five datasets that cover various ethnicities and genders.
- We captured the moiré pattern under 2 devices, 4 screens, 2 lightning, and 4 different camera angles. Original
- A 4x zoomed image of both the original and the Moiré.

Camera-captured with Moiré Pattern

(4x Zoomed)

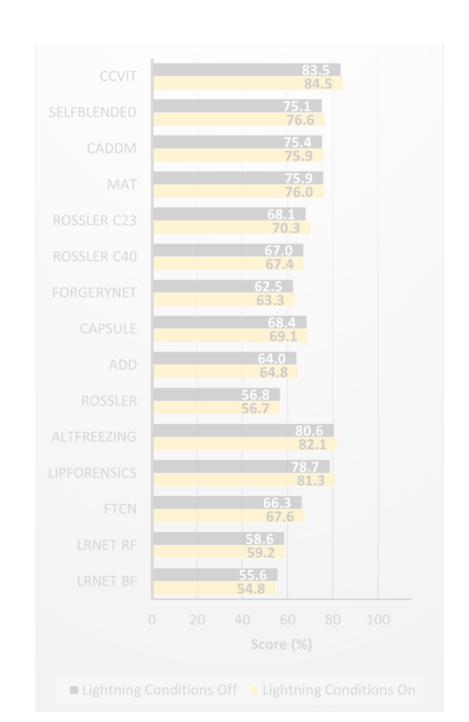



DeepMoiréFake Generation Pipeline

We focus on five datasets that cover various ethnicities and genders.

• We captured the moiré pattern under 2 devices, 4 screens, 2 lightning, and 4 different camera angles.

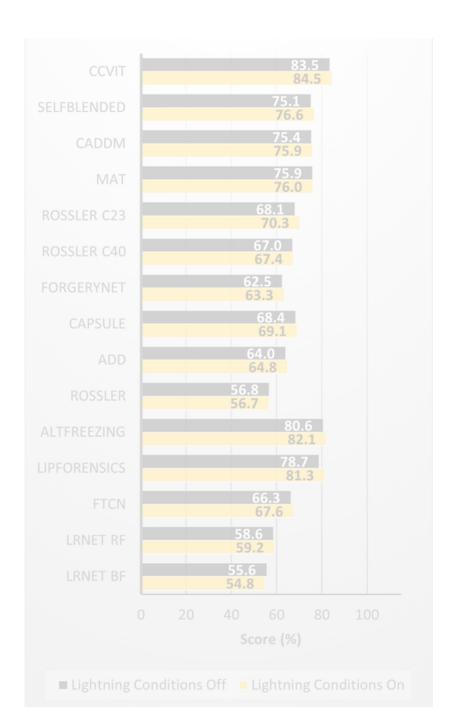
A 4x zoomed image of both the original and the Moiré.



Experiments

• We evaluate the performance of five datasets using various Spatial and Temporal methods.

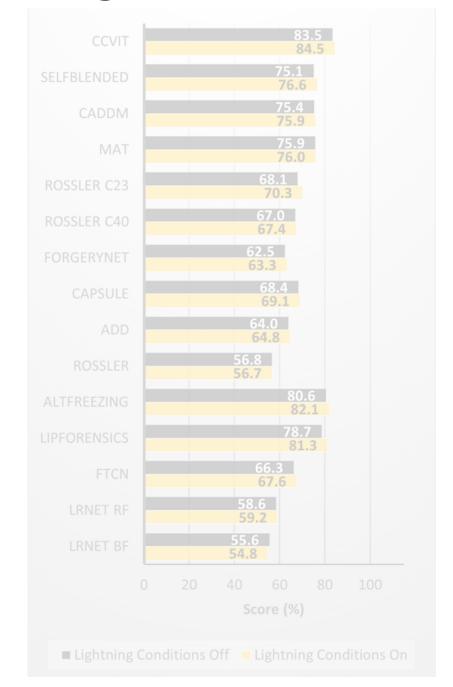
I	DETECTORS	ORIGINAL	Vide	eos capti	ired from	screens
(Type and Name)		PERFORMANCE	LG	BenQ	Lenovo	Samsung
	LRNet BF	61.7	54.9	55.3	55.9	53.2
0	LRNet RF	62.2	58.8	60.5	58.7	58.8
IDE	FTCN	90.2	65.9	65.3	70.6	68.9
	LipForensics	90.6	80.3	80.8	84.4	79.8
	AltFreezing	92.5	80.4	81.3	83.7	82.9
	Rossler	67.7	56.2	54.5	59.4	56.9
	ADD	69.7	65.4	64.3	66.3	63.4
	Capsule	71.3	71.2	69.6	69.0	66.6
[+]	ForgeryNet	76.9	61.5	61.8	66.5	63.6
5	Rossler C40	77.0	67.7	66.9	67.3	67.8
[MAGE	Rossler C23	86.5	68.6	67.4	74.5	70.9
\equiv	MAT	87.0	72.4	74.9	80.1	76.6
	CADDM	87.1	71.3	71.8	80.9	79.5
	SelfBlended	88.8	73.7	75.5	80.9	76.4
	CCViT	95.0	81.9	83.7	86.4	86.0
Avg. Performance loss (Moiré vs. Original)			-11.6	-11.4	-8.0	-10.2



Experiments under Video Deepfake Detectors

- All video detectors AUCs across all screens dropped 10.4% on average.
- LRNet BF and LRNet RF are the most affected in every screen setting.

Ι	DETECTORS	ORIGINAL	Videos captured from screens			
$(T_{\mathbf{y}})$	pe and Name)	PERFORMANCE	LG	BenQ	Lenovo	Samsung
	LRNet BF	61.7	54.9	55.3	55.9	53.2
Q	LRNet RF	62.2	58.8	60.5	58.7	58.8
VIDEO	FTCN	90.2	65.9	65.3	70.6	68.9
N	LipForensics	90.6	80.3	80.8	84.4	79.8
	AltFreezing	92.5	80.4	81.3	83.7	82.9
	Rossler	67.7	56.2	54.5	59.4	56.9
	ADD	69.7	65.4	64.3	66.3	63.4
	Capsule	71.3	71.2	69.6	69.0	66.6
[+]	ForgeryNet	76.9	61.5	61.8	66.5	63.6
5	Rossler C40	77.0	67.7	66.9	67.3	67.8
IMAGE	Rossler C23	86.5	68.6	67.4	74.5	70.9
	MAT	87.0	72.4	74.9	80.1	76.6
	CADDM	87.1	71.3	71.8	80.9	79.5
	SelfBlended	88.8	73.7	75.5	80.9	76.4
	CCViT	95.0	81.9	83.7	86.4	86.0
Avg. Performance loss (Moiré vs. Original)			-11.6	-11.4	-8.0	-10.2

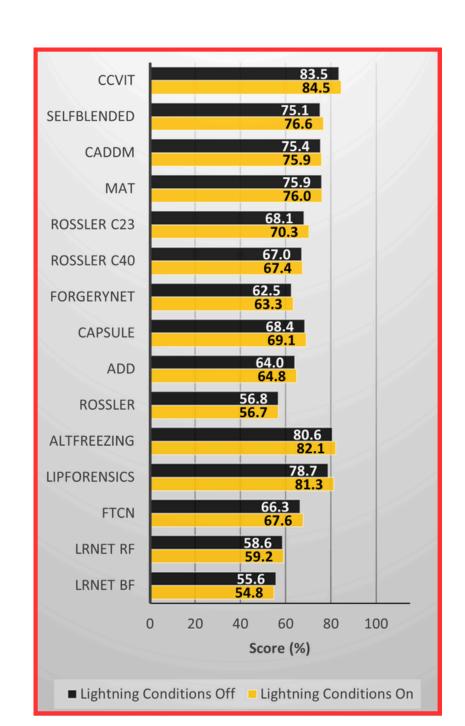

Experiments under Image Deepfake Detectors

- All image detector AUCs across all screens dropped 10.2% on average.
- The method most affected is Rossler, with an AUC loss of around 11%.

• All detector AUCs drop under screen recapture, with average losses of

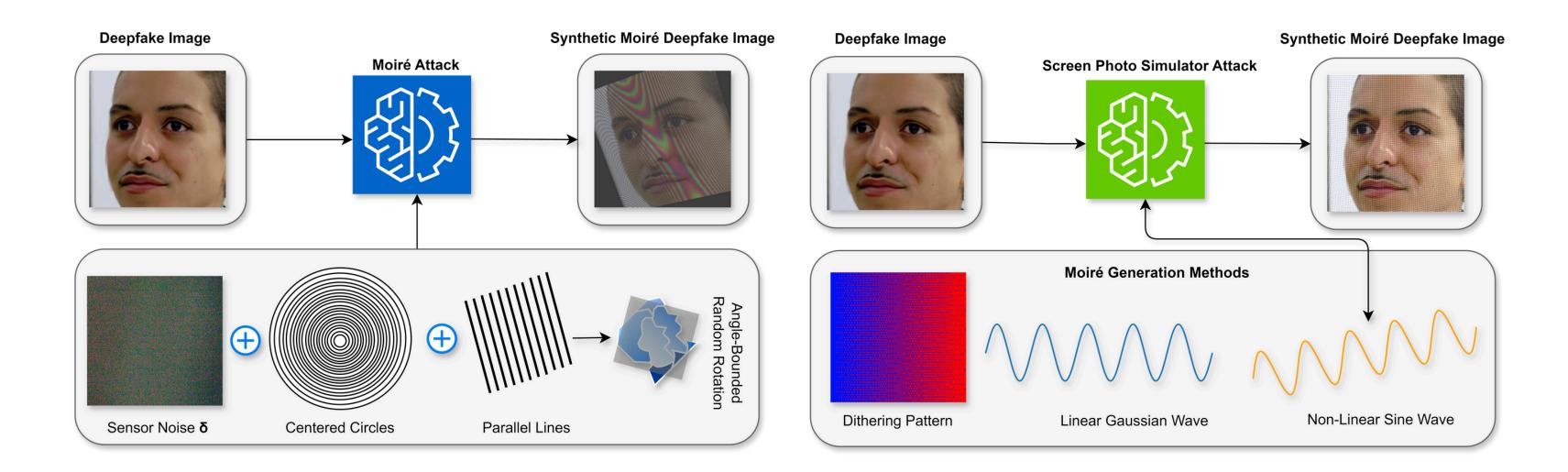
8-11.6%, depending on the screens.

Ι	DETECTORS	ORIGINAL	Vide	eos captı	ired from	screens
(T)	vpe and Name)	PERFORMANCE	LG	BenQ	Lenovo	Samsung
	LRNet BF	61.7	54.9	55.3	55.9	53.2
0	LRNet RF	62.2	58.8	60.5	58.7	58.8
IDE	FTCN	90.2	65.9	65.3	70.6	68.9
V	LipForensics	90.6	80.3	80.8	84.4	79.8
	AltFreezing	92.5	80.4	81.3	83.7	82.9
	Rossler	67.7	56.2	54.5	59.4	56.9
ı	ADD	69.7	65.4	64.3	66.3	63.4
ı	Capsule	71.3	71.2	69.6	69.0	66.6
(-)	ForgeryNet	76.9	61.5	61.8	66.5	63.6
5	Rossler C40	77.0	67.7	66.9	67.3	67.8
IMAGE	Rossler C23	86.5	68.6	67.4	74.5	70.9
三	MAT	87.0	72.4	74.9	80.1	76.6
ı	CADDM	87.1	71.3	71.8	80.9	79.5
ı	SelfBlended	88.8	73.7	75.5	80.9	76.4
	CCViT	95.0	81.9	83.7	86.4	86.0
	Avg. Performance loss (Moiré vs. Original)			-11.4	-8.0	-10.2



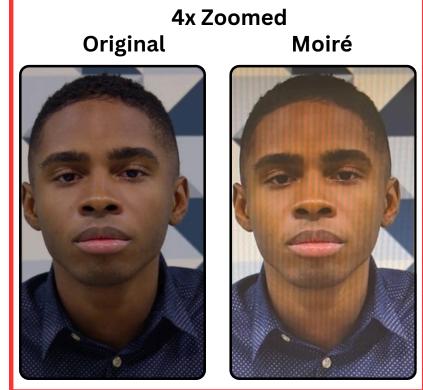
Experiments under Lighting Conditions

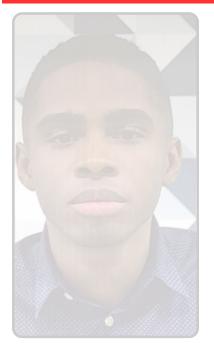
• There is an average **10.3%** AUC loss with light on and **11.2%** with lights off on average across all screens.

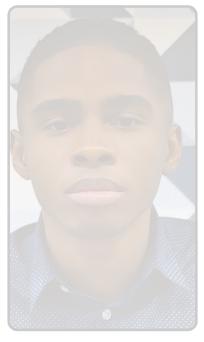

DETECTORS		ORIGINAL	Videos captured from screens				
(Type and Name)		PERFORMANCE	LG	BenQ	Lenovo	Samsung	
	LRNet BF	61.7	54.9	55.3	55.9	53.2	
0	LRNet RF	62.2	58.8	60.5	58.7	58.8	
IDE	FTCN	90.2	65.9	65.3	70.6	68.9	
	LipForensics	90.6	80.3	80.8	84.4	79.8	
	AltFreezing	92.5	80.4	81.3	83.7	82.9	
	Rossler	67.7	56.2	54.5	59.4	56.9	
	ADD	69.7	65.4	64.3	66.3	63.4	
	Capsule	71.3	71.2	69.6	69.0	66.6	
[-]	ForgeryNet	76.9	61.5	61.8	66.5	63.6	
IMAGE	Rossler C40	77.0	67.7	66.9	67.3	67.8	
MA	Rossler C23	86.5	68.6	67.4	74.5	70.9	
	MAT	87.0	72.4	74.9	80.1	76.6	
	CADDM	87.1	71.3	71.8	80.9	79.5	
	SelfBlended	88.8	73.7	75.5	80.9	76.4	
	CCViT	95.0	81.9	83.7	86.4	86.0	
Avg. Performance loss (Moiré vs. Original)			-11.6	-11.4	-8.0	-10.2	

Synthetic Moiré Generation pipeline

- We simulated a scenario where an attacker could use synthetic Moiré.
- We utilize two methods to generate synthetic Moiré patterns.
- The performance of the deepfake detectors went down from **78-76%** to **75%-55%**, respectively.



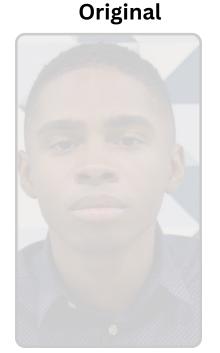

Performance after Moiré Pattern


• We choose image deepfake detectors for comparison with image-based demoiréing methods.

	AUC	AUC	I	D EMOIRÉIN	G METHO	DS PERFOR	MANCE	
DETECTORS		on Moiré	ESDNet (FHDMi)	ESDNet (UHDM)	MBCNN	DMCNN	DDA	Average
Rossler	67.7	58.5	58.1	53.7	55.9	57.1	54.4	55.8
ADD	69.7	67.6	68.5	65.5	66.1	65.7	64.8	66.1
Capsule	71.3	70.4	69.4	60.7	60.5	62.0	59.9	62.5
ForgeryNet	76.9	64.3	64.4	60.4	54.6	61.3	51.2	58.4
Rossler C40	77.0	68.2	69.1	66.6	64.2	66.5	63.3	65.9
Rossler C23	86.5	72.8	76.9	69.2	67.3	71.5	66.5	70.3
MAT	87.0	75.2	75.5	66.0	63.6	65.9	63.4	66.9
CADDM	87.1	78.5	79.5	73.4	72.7	75.0	72.3	74.6
SelfBlended	88.8	78.4	73.6	60.7	70.1	70.6	69.3	68.9
LipForensics	90.6	83.3	67.2	66.1	66.1	71.6	65.9	67.3
CCViT	95.0	85.8	84.5	75.3	76.2	82.2	77.9	79.2
Avg. AUC loss (DeMoiré vs. Moiré)			-1.5	-7.8	-7.8	4.9	8.6	6.1
Avg. AUC loss (DeMoiré vs. OG)			-10.1	-16.4	-16.4	13.5	17.2	14.7

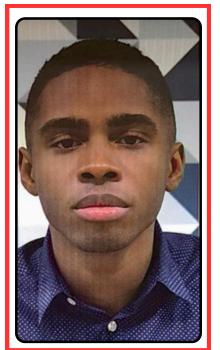
Detector	Original	Moiré Video	VD-Moiré (Demoiré)	FPANet (Demoiré)
AltFreezing	100.0	84.4	74.7	92.9
FTCN	56.3	43.8	68.8	40.6
LipForensics	100.0	87.5	90.6	90.6

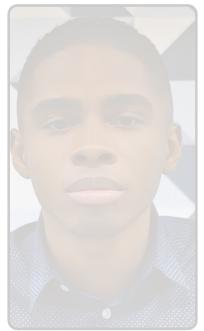
Demoiréd (4x Zoomed)


Performance after Image Demoiréing Methods

• Image demoiréing techniques yield inconsistent results; overall, most detectors show performance degradation after demoiréing.

4x Zoomed


	AUC	AUC	I	DEMOIRÉIN	G METHO	DS PERFOR	MANCE	
DETECTORS	on OG	on Moiré	ESDNet (FHDMi)	ESDNet (UHDM)	MBCNN	DMCNN	DDA	Average
Rossler	67.7	58.5	58.1	53.7	55.9	57.1	54.4	55.8
ADD	69.7	67.6	68.5	65.5	66.1	65.7	64.8	66.1
Capsule	71.3	70.4	69.4	60.7	60.5	62.0	59.9	62.5
ForgeryNet	76.9	64.3	64.4	60.4	54.6	61.3	51.2	58.4
Rossler C40	77.0	68.2	69.1	66.6	64.2	66.5	63.3	65.9
Rossler C23	86.5	72.8	76.9	69.2	67.3	71.5	66.5	70.3
MAT	87.0	75.2	75.5	66.0	63.6	65.9	63.4	66.9
CADDM	87.1	78.5	79.5	73.4	72.7	75.0	72.3	74.6
SelfBlended	88.8	78.4	73.6	60.7	70.1	70.6	69.3	68.9
LipForensics	90.6	83.3	67.2	66.1	66.1	71.6	65.9	67.3
CCViT	95.0	85.8	84.5	75.3	76.2	82.2	77.9	79.2
Avg. AUC los	Avg. AUC loss (DeMoiré vs. Moiré)		-1.5↓	-7.8↓	-7.8↓	4.9↓	8.6↓	6.1
Avg. AUC lo	Avg. AUC loss (DeMoiré vs. OG)			-16.4	-16.4 ↓	13.5↓	17.2↓	14.7↓

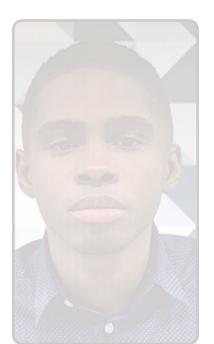

Detector	Original	Moiré Video	VD-Moiré (Demoiré)	FPANet (Demoiré)
AltFreezing	100.0	84.4	74.7	92.9
FTCN	56.3	43.8	68.8	40.6
LipForensics	100.0	87.5	90.6	90.6

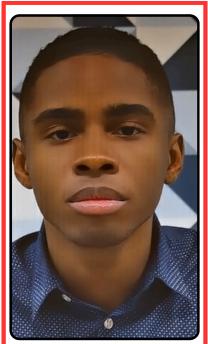
Moiré

Demoiréd (4x Zoomed)

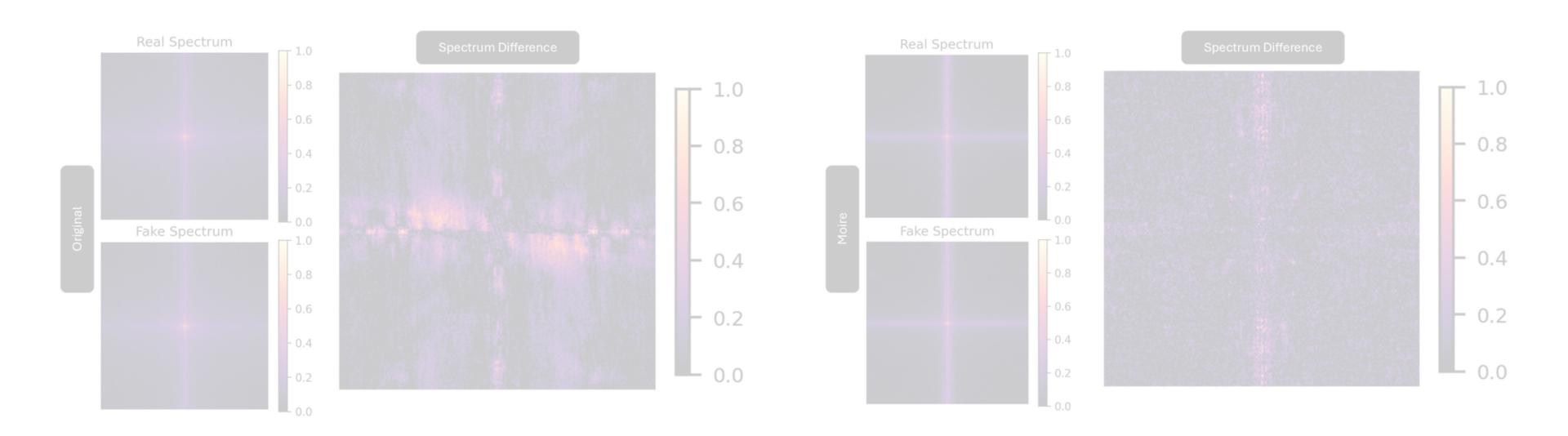
Performance after Video Demoiréing Methods

• Video demoiréing lowers the AUC for deepfake detectors like FTCN (FPANet technique) but performs better with other methods.


	AUC	AUC	I	DEMOIRÉIN	G METHO	DS PERFOR	MANCE	
DETECTORS	on OG	on Moiré	ESDNet (FHDMi)	ESDNet (UHDM)	MBCNN	DMCNN	DDA	Average
Rossler	67.7	58.5	58.1	53.7	55.9	57.1	54.4	55.8
ADD	69.7	67.6	68.5	65.5	66.1	65.7	64.8	66.1
Capsule	71.3	70.4	69.4	60.7	60.5	62.0	59.9	62.5
ForgeryNet	76.9	64.3	64.4	60.4	54.6	61.3	51.2	58.4
Rossler C40	77.0	68.2	69.1	66.6	64.2	66.5	63.3	65.9
Rossler C23	86.5	72.8	76.9	69.2	67.3	71.5	66.5	70.3
MAT	87.0	75.2	75.5	66.0	63.6	65.9	63.4	66.9
CADDM	87.1	78.5	79.5	73.4	72.7	75.0	72.3	74.6
SelfBlended	88.8	78.4	73.6	60.7	70.1	70.6	69.3	68.9
LipForensics	90.6	83.3	67.2	66.1	66.1	71.6	65.9	67.3
CĈViT	95.0	85.8	84.5	75.3	76.2	82.2	77.9	79.2
Avg. AUC los	s (DeMoir	é vs. Moiré)	-1.5	-7.8	-7.8	4.9	8.6	6.1
Avg. AUC loss (DeMoiré vs. OG)			-10.1	-16.4	-16.4	13.5	17.2	14.7

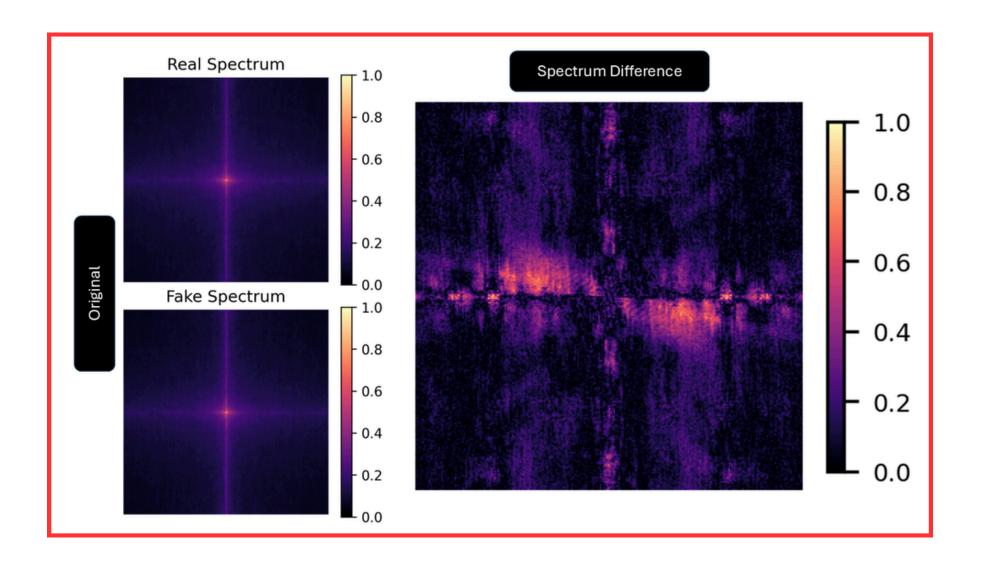

Detector	Original	Moiré Video	VD-Moiré (Demoiré)	FPANet (Demoiré)
AltFreezing	100.0	84.4	74.7	92.9
FTCN	56.3	43.8	68.8	40.6
LipForensics	100.0	87.5	90.6	90.6

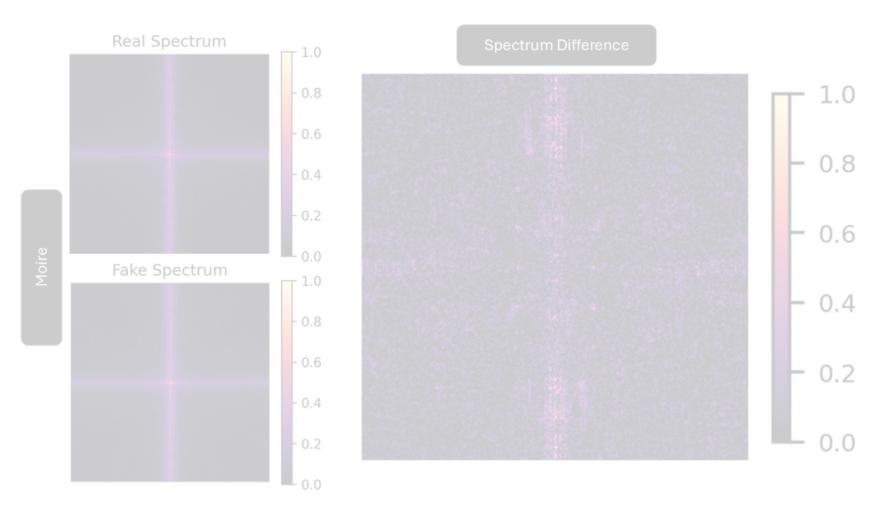
4x Zoomed Original Moiré



Demoiréd (4x Zoomed)

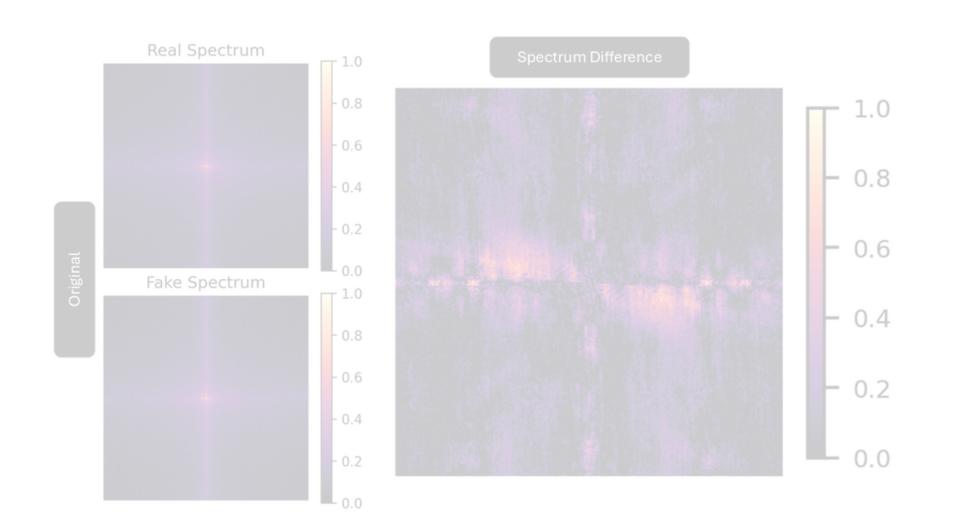
Moiré pattern under Frequency Spectrum

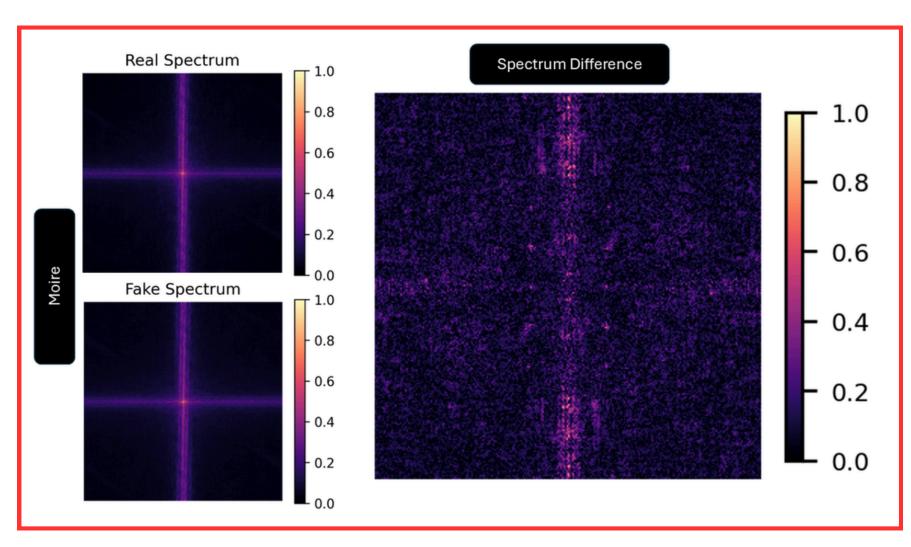

- Moire pattern distorts the original frequency pattern of a deepfake video.
- This degradation explains the drops in performance in all detectors.



Moiré pattern under Frequency Spectrum

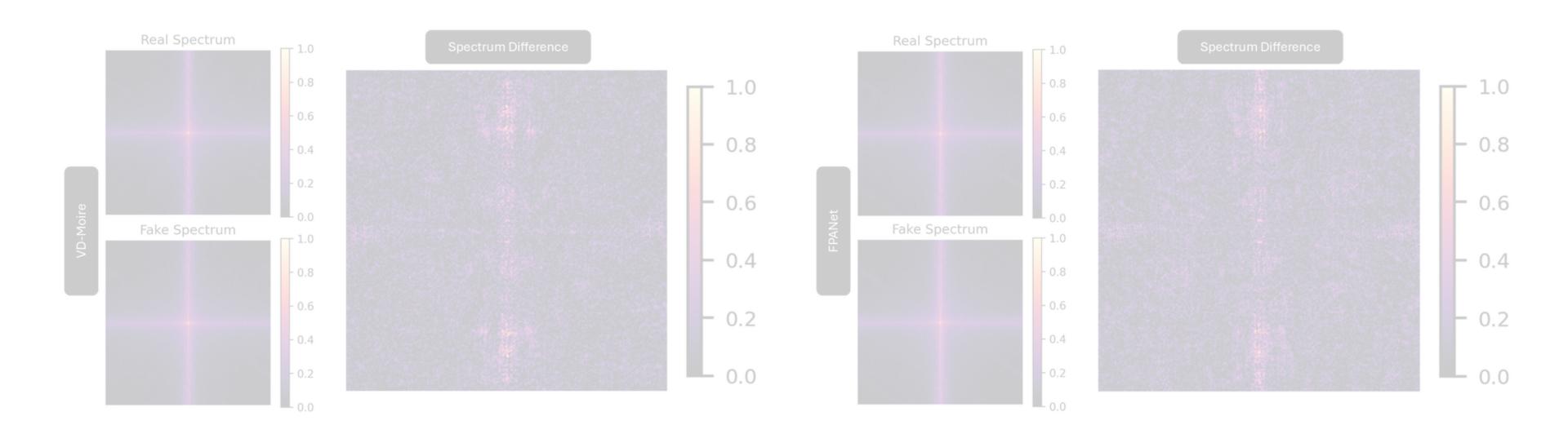
• The spectrum difference of a deepfake video exhibits a distinct characteristic.



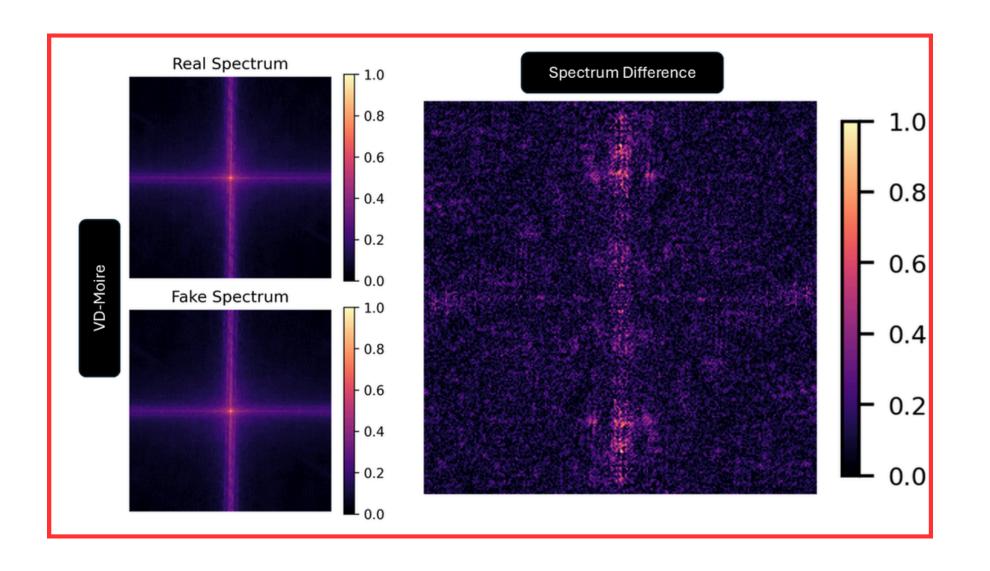


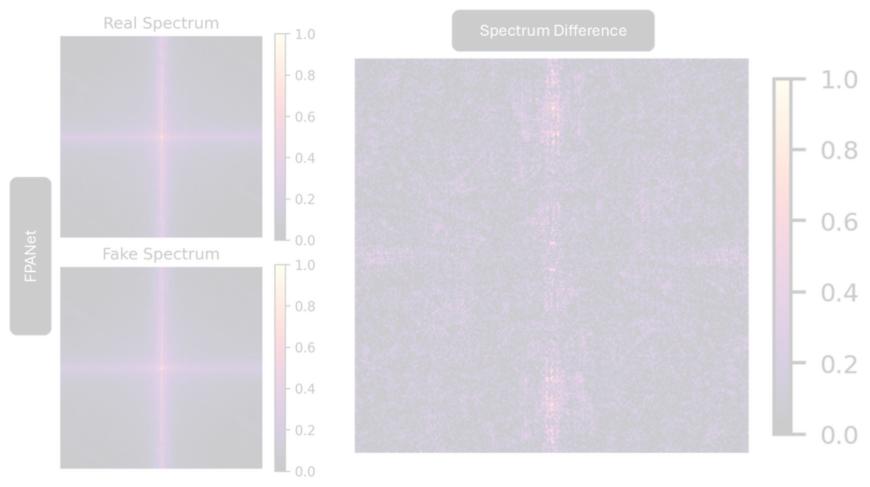
Moiré pattern under Frequency Spectrum

- Moire pattern distorts the original frequency pattern of a deepfake video.
- This degradation explains the drops in performance in all detectors.



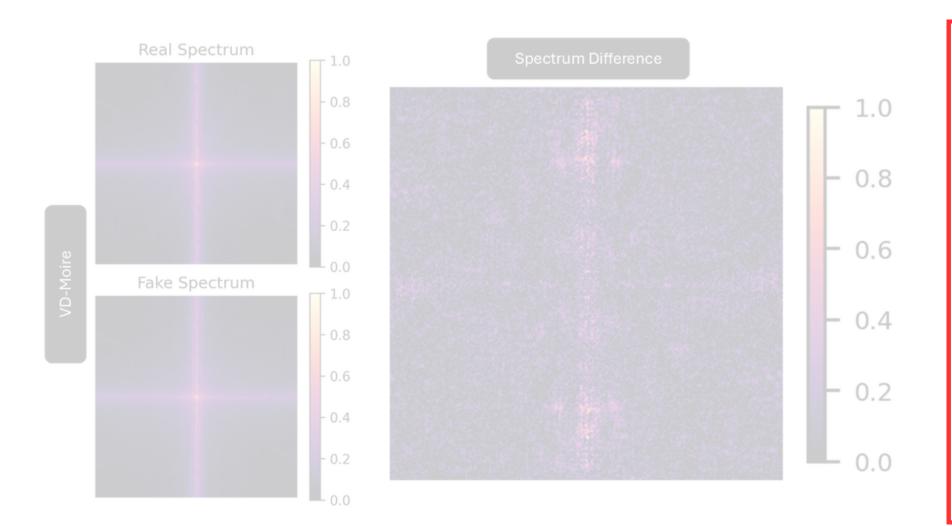
Moiré pattern under Frequency Spectrum-Demoiréing

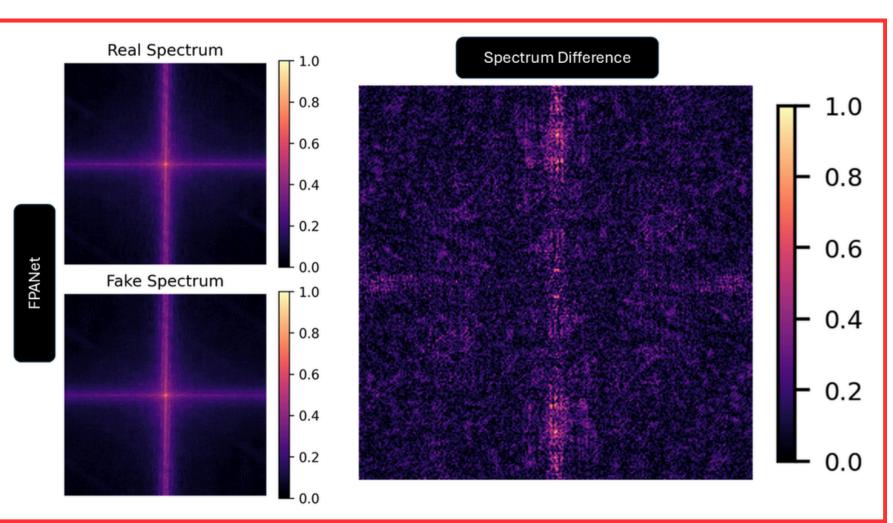

- Using Demoiréing to recover the original frequency pattern is not enough.
- The original pattern is lost, leading to a significant loss in prediction.



Moiré pattern under Frequency Spectrum-Demoiréing

- Using Demoiréing to recover the original frequency pattern is not enough.
- The original pattern is lost, leading to a significant loss in prediction.





Moiré pattern under Frequency Spectrum-Demoiréing

- Using Demoiréing to recover the original frequency pattern is not enough.
- The original pattern is lost, leading to a significant loss in prediction.

Performance after Synthetic and Compression Moiré Attacks

- Although some methods showed slight improvement, we consider them to be methods that can handle these distortions.
- MAT showed the most severe performance drop of **21.4%**.
- This is mainly due to the change of artifacts introduced at inference time.

DETECTORS	WITHOUT	MOIRÉ ATTACK				
DETECTORS	ATTACK	CMPA	SMPA-MA	SMPA-SPS		
Rossler C23	78.1	81.9	83.1	75.4		
MAT	76.8	68.8	55.4	61.8		
CADDM	73.0	73.1	86.8	80.7		

Performance after Synthetic and Compression Moiré Attacks

- Although some methods showed slight improvement, we consider them to be methods that can handle these distortions.
- MAT showed the most severe performance drop of **21.4%**.
- This is mainly due to the change of artifacts introduced at inference time.

DETECTORS	WITHOUT		Moiré Attack				
DETECTORS	ATTACK	CMPA	SMPA-MA	SMPA-SPS			
Rossler C23	78.1	81.9	83.1	75.4			
MAT	76.8	68.8	55.4	61.8			
CADDM	73.0	73.1	86.8	80.7			

Performance after Fine-Tuning and Retraining

- Fine-tuning and retraining improved all models overall, with MAT and CADDM showing uniform gains across domains.
- Rossler exhibited small (1–2%) drops in a few subsets but remained largely improved.

DETECTORS	FINE-TUNE				RETRAIN			
	OG	<i>CMPA</i>	SMPA-MA	SMPA-SPS	OG	CMPA	SMPA-MA	SMPA-SPS
Rossler C23	77.0	80.6	94.4	81.1	87.9	84.7	94.9	79.5
MAT	94.5	85.4	70.3	95.6	97.9	89.0	71.3	96.5
CADDM	86.3	84.6	94.4	95.0	85.1	81.9	92.9	95.4

Performance after Fine-Tuning and Retraining

- Fine-tuning and retraining improved all models overall, with MAT and CADDM showing uniform gains across domains.
- Rossler exhibited small (1–2%) drops in a few subsets but remained largely improved.

DETECTORS	FINE-TUNE				RETRAIN			
	OG	<i>CMPA</i>	SMPA-MA	SMPA-SPS	OG	CMPA	SMPA-MA	SMPA-SPS
Rossler C23	77.0	80.6	94.4	81.1	87.9	84.7	94.9	79.5
MAT	94.5	85.4	70.3	95.6	97.9	89.0	71.3	96.5
CADDM	86.3	84.6	94.4	95.0	85.1	81.9	92.9	95.4

Conclusion

- We provide a Novel Real-World Moiré Benchmark dataset; DeepMoiréFake (DMF).
- We highlight Authentic Moiré vs. Synthetic Moiré results and how they affect deepfake detectors.
- We show how demoiréing methods can be effective, but they may essentially remove deepfake features.
- We also perform retraining, which enhances model performance.
- We conclude by calling for Distortion-Aware training for future researchers by incorporating our DMF dataset in their pipeline.

Thank you!!!

DeepMoiréFake GitHub