

AVROBUSTBENCH

Benchmarking the Robustness of Audio-Visual Recognition Models at Test-Time

Sarthak Kumar Maharana

Saksham Singh Kushwaha

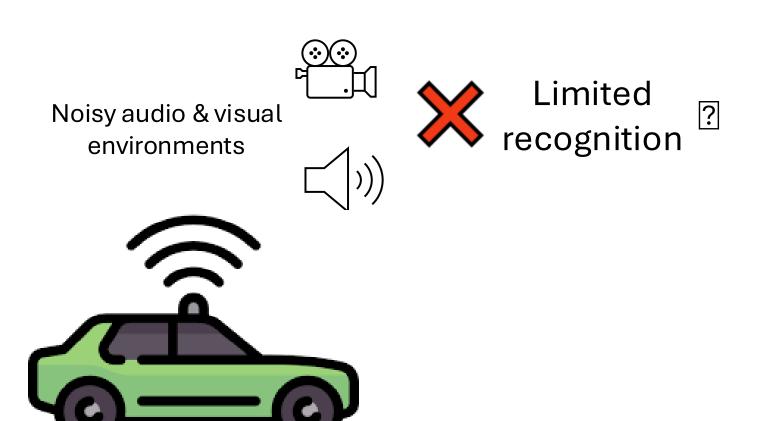
Baoming Zhang

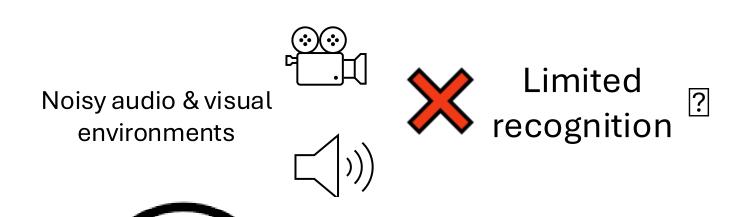
Adrian Rodriguez

Songtao Wei

Yapeng Tian

Yunhui Guo





Another critical example....

Unavoidable bimodal shifts can hamper scene understanding

Noisy audio & visual environments

Limited recognition

Another critical example....

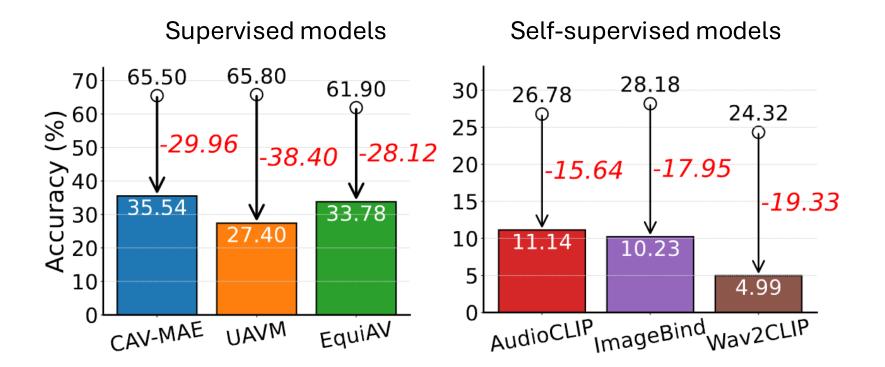
Unavoidable bimodal shifts can hamper scene understanding

Testing data varies in many ways in the real-world. Yet, our models are the same and fail to generalize!

Limited recognition of popular audio-visual recognition models

Popular supervised and self-supervised models struggle with bimodal corruptions at test-time!

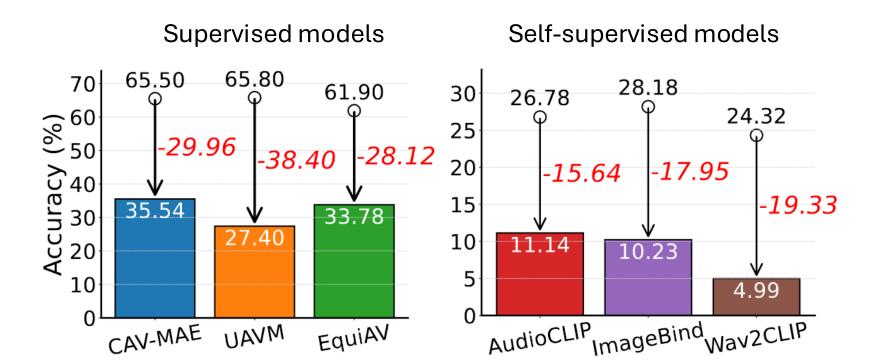
On our proposed VGGSOUND-2C



Limited recognition of popular audio-visual recognition models

Popular supervised and self-supervised models struggle with bimodal corruptions at test-time!

On our proposed VGGSOUND-2C



There is a need to establish rigorous robustness benchmarks for audio-visual learning problems!

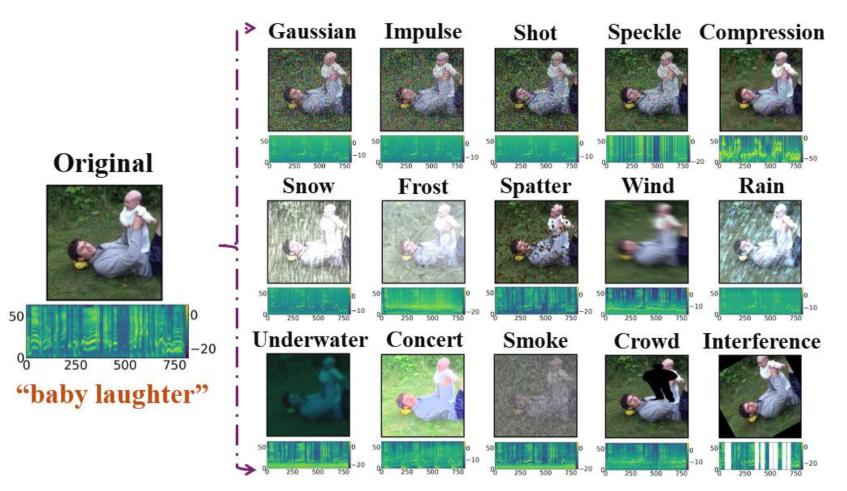
So, what's in **AVROBUSTBENCH**?

We release realistic, co-occurring, and correlated corruptions to audio-visual modalities.

Benchmark	Modalities	Real-World Shifts?	Multimodal Corruptions?	Features	
				Co-occur?	Correlated?
ImageNet-C	{v}	✓	×	X	X
MULTIBENCH	$\{a, v\}$	_	X	X	X
YouCook2-P, MSRVTT-P	$\{1, v\}$	✓	X	X	X
SRB	{s}	✓	X	X	X
Chen et al.	$\{1, v\}$	✓	X	X	X
Hong et al.	$\{s, v\}$	✓	✓	✓	X
READ	$\{a, v\}$	✓	X	X	X
AVROBUSTBENCH (Ours)	$\overline{(a, v)}$				

So, what's in **AVROBUSTBENCH**?

We release *realistic*, *co-occurring*, *and correlated corruptions* to audio-visual modalities.



To emulate <u>real-world</u> shifts,

- We introduce 75 corruptions 15 corruptions at 5 severity levels, each.
- 2. Both modalities are jointly corrupted at test-time.
- 3. Three major categories Digital, Environmental, and Human-Related.
- Can be extended to any audio/speech-visual dataset to study robustness.

So, what's in **AVROBUSTBENCH**?

We also release four datasets – AUDIOSET-2C, VGGSOUND-2C, KINETICS-2C, and EPICKITCHENS-2C. Our proposed corruptions are applied to the test sets of the source datasets.

Dataset	# Samples	Classes	Avg. duration
AUDIOSET-2C	16,742	527	10 sec
VGGSound-2C	14,046	309	10 sec
KINETICS-2C	3,111	32	10 sec
EPICKITCHENS-2C	205	97 (Noun) 300 (Verb)	/ 4 mins

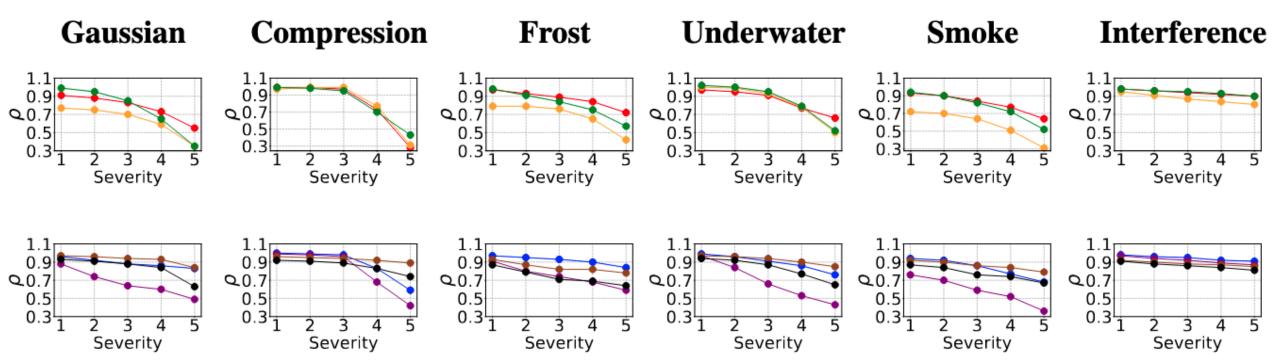
Check out our demo @ https://www.youtube.com/watch?v=hYdcRO3BuIY&ab_channel=SarthakMaharana

Results on robustness at test-time (2)

Relative robustness $\rho = 1 - \frac{new\ test\ acc. - source\ test\ acc.}{source\ test\ acc.}$

Corruption has a large effect on model robustness; increase in severity decreases robustness!

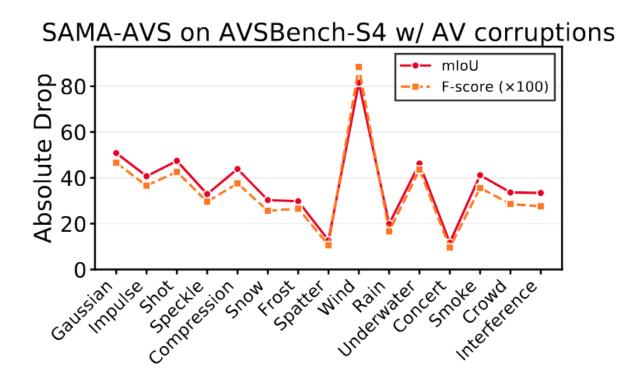
<u>Top – AUDIOSET-2C</u>, Bottom – <u>EPICKITCHENS-2C</u> for difference <u>supervised</u> and <u>self-supervised</u> <u>models</u>

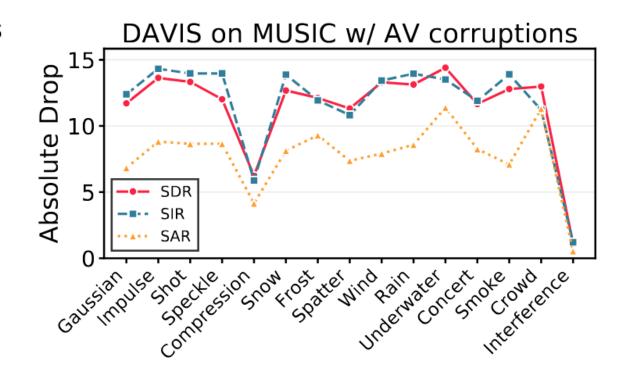


Beyond recognition tasks 🤒

Audio-Visual Segmentation

Sound Source Separation





AVROBUSTBENCH

Benchmarking the Robustness of Audio-Visual Recognition Models at Test-Time

Sarthak Kumar Maharana

Saksham Singh Kushwaha

Baoming Zhang

Adrian Rodriguez

Songtao Wei

Yapeng Tian

Yunhui Guo

