

VolleyBots: A Testbed for Multi-Drone Volleyball Game Combining Motion Control and Strategic Play

Zelai Xu^{1*}, Ruize Zhang^{1*}, Chao Yu¹²⁺, Huining Yuan¹, Xiangmin Yi¹, Shilong Ji¹, Chuqi Wang¹, Wenhao Tang¹, Feng Gao¹, Wenbo Ding¹, Xinlei Chen¹, Yu Wang¹

¹ Tsinghua University, ² Beijing Zhongguancun Academy,

* Equal Contribution, * Corresponding Authors

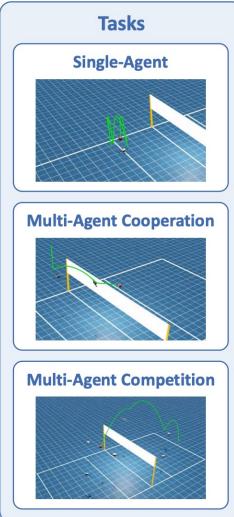
Introduction

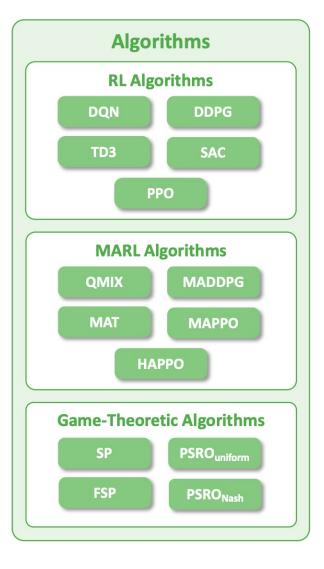
- In this paper, we present *VolleyBots*, a novel robot sports testbed where multiple drones cooperate and compete in the sport of volleyball under physical dynamics.
- VolleyBots integrates three features within a unified platform:
 - Competitive and cooperative gameplay;
 - Turn-based interaction structure;
 - Agile 3D maneuvering.
- Comparison between VolleyBots and other robot sports platforms:

	Mu coop.	lti-Agent comp.	Task mixed	Game Type	Entity	Hierarchical Policy	Open Source	Baseline Provided
Robot Table Tennis [5]	X	1	X	turn-based	robotic arm	✓	X	X
Badminton Robot [13]	X	X	X	turn-based	robotic arm	X	X	×
Quadruped Soccer [2]	X	X	X	simultaneous	quadruped	✓	X	×
MQE [4]	1	/	✓	simultaneous	quadruped	✓	✓	√
Humanoid Football [1]	X	/	✓	simultaneous	humanoid	✓	✓	×
SMPLOlympics [14]	X	/	/	simu. & turn-based	humanoid	X	✓	√
Pursuit-Evasion [7]	1	X	X	simultaneous	drone	X	✓	√
Drone-Racing [15]	X	X	X	simultaneous	drone	×	X	X
VolleyBots (Ours)	✓	✓	✓	turn-based	drone	✓	✓	✓

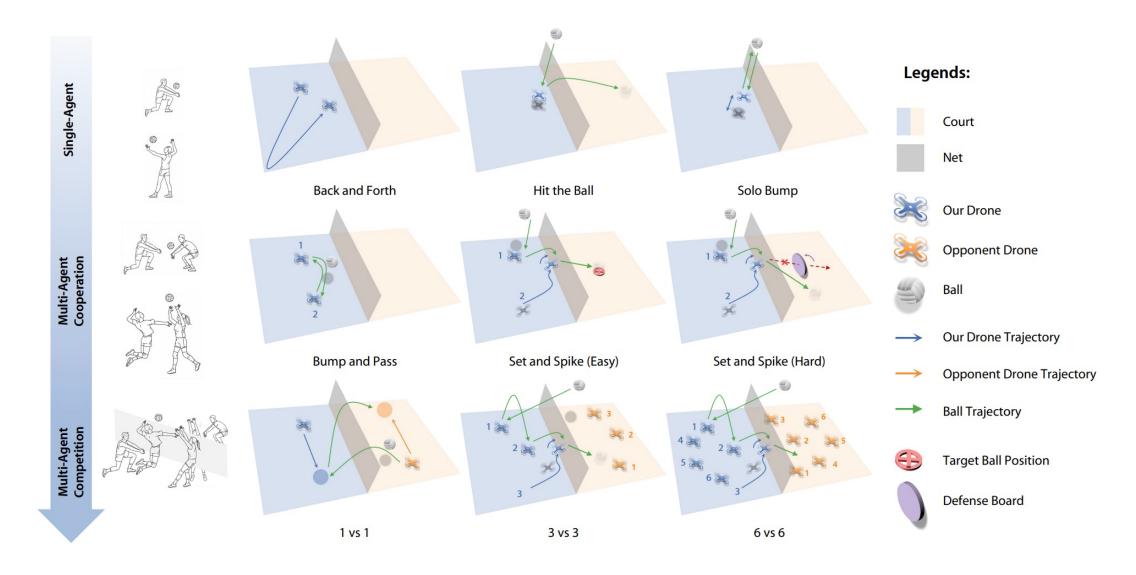
Overview

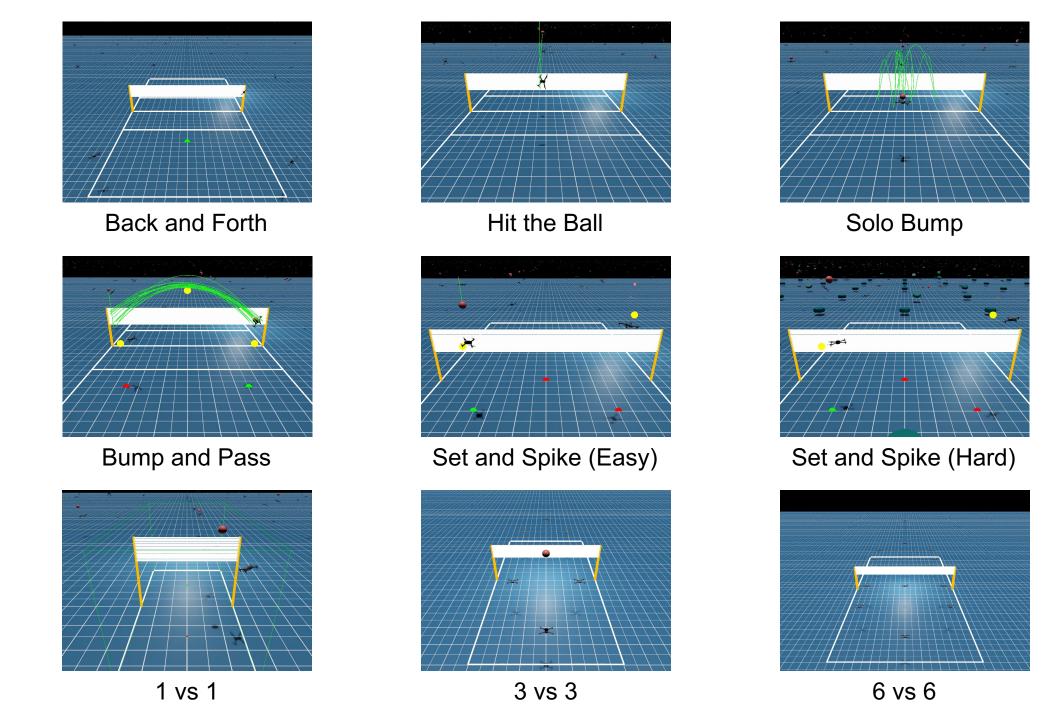






Tasks





Single-agent tasks

	Back and Forth		Hit th	e Ball	Solo Bump		
	CTBR	PRT	CTBR	PRT	CTBR	PRT	
DQN	0.00 ± 0.00	0.00 ± 0.00	0.39 ± 0.02	1.88 ± 0.34	0.00 ± 0.00	0.00 ± 0.00	
DDPG	1.14 ± 0.34	0.83 ± 0.23	2.87 ± 0.55	3.98 ± 1.08	0.44 ± 0.34	0.67 ± 0.32	
TD3	1.12 ± 0.68	0.99 ± 0.01	3.00 ± 0.52	3.91 ± 0.35	3.68 ± 1.43	5.29 ± 1.28	
SAC	0.90 ± 0.12	0.83 ± 0.25	3.76 ± 1.46	3.87 ± 2.34	0.54 ± 0.27	1.36 ± 0.60	
PPO	$\boldsymbol{9.25 \pm 0.31}$	$\boldsymbol{10.04 \pm 0.20}$	$\boldsymbol{10.48 \pm 0.08}$	11.40 ± 0.06	$\boldsymbol{8.58 \pm 0.79}$	$\boldsymbol{10.83 \pm 1.24}$	

- Comparing different action spaces, the results indicate that PRT slightly outperforms CTBR in most tasks.
- With a single set of hyperparameters, on-policy RL methods maintains consistently strong performance across multiple tasks, demonstrating superior robustness compared to off-policy methods.

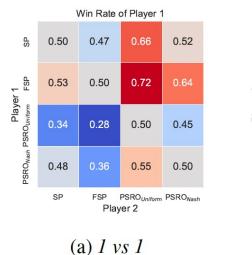
Multi-agent cooperative tasks

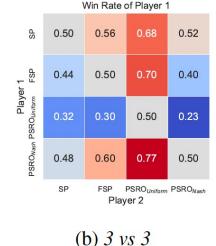
	Витр а	and Pass	Set and Sp	oike (Easy)	Set and Spike (Hard)		
	w.o. shaping	w. shaping	w.o. shaping	w. shaping	w.o. shaping	w. shaping	
QMIX	0.09 ± 0.01	0.09 ± 0.00	0.02 ± 0.00	0.02 ± 0.00	0.02 ± 0.00	0.02 ± 0.00	
MADDPG	0.79 ± 0.15	0.84 ± 0.09	0.22 ± 0.02	0.23 ± 0.01	0.22 ± 0.02	0.22 ± 0.02	
MAPPO	11.32 ± 0.91	13.71 ± 0.58	0.25 ± 0.00	0.99 ± 0.00	0.25 ± 0.00	0.75 ± 0.01	
HAPPO	7.95 ± 3.67	12.14 ± 0.83	0.25 ± 0.00	0.98 ± 0.00	0.25 ± 0.00	0.79 ± 0.10	
MAT	7.39 ± 6.00	13.11 ± 0.43	0.25 ± 0.00	0.89 ± 0.13	0.25 ± 0.00	0.80 ± 0.11	

- Using reward shaping leads to better performance.
- With a single set of hyperparameters, on-policy MARL methods also outperform offpolicy MARL methods.

Multi-agent competitive tasks

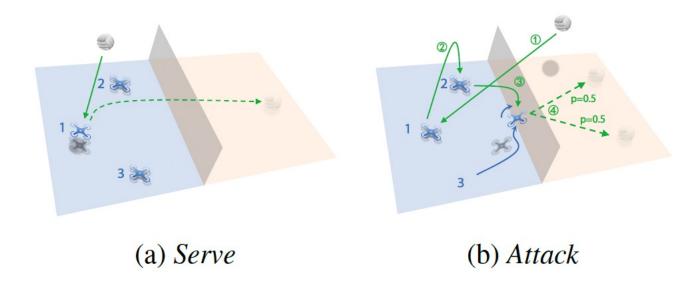
	j	! vs 1		3 vs 3			
	Exploitability \downarrow	Win Rate ↑	Elo↑	Exploitability \downarrow	Win Rate ↑	Elo↑	
SP	48.63	0.55	1072	25.76	0.59	1077	
FSP	30.41	0.63	927	38.86	0.52	906	
PSRO _{Uniform}	18.51	0.35	854	49.48	0.28	750	
PSRO _{Nash}	10.74	0.47	1147	35.83	0.61	1268	





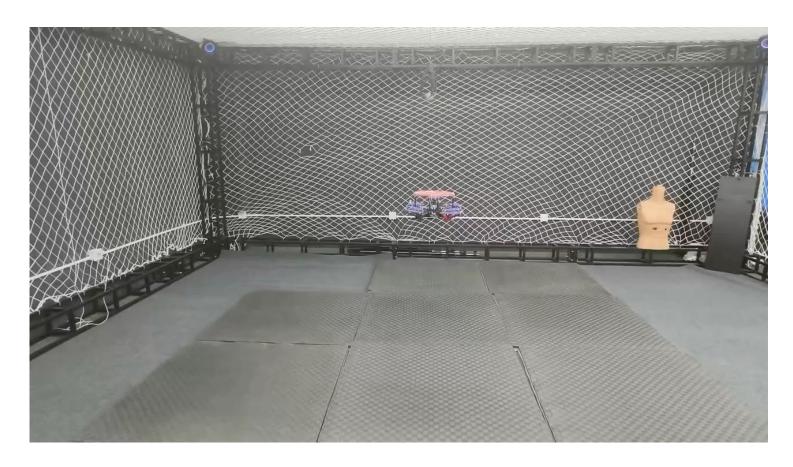
- In the most difficult 6 vs 6 task, none of the methods converges to an effective strategy.
- Existing approaches also struggle in 1 vs 1 and 3 vs 3 tasks that combine motion control and strategic play.

Multi-agent competitive tasks



• Additionally, we design a rule-based hierarchical policy which achieves 69.5% win rate against the strongest baseline in the 3 vs 3 task, demonstrating its potential for tackling the complex interplay between low-level control and high-level strategy.

Sim-to-Real



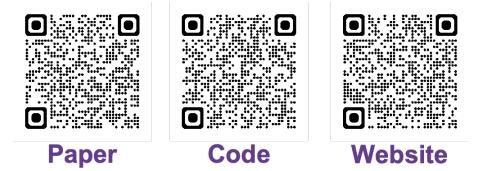
We use the Solo Bump task as a demonstration of the policy's ability to zero-shot transfer to the real world. Experiment results show that the drone successfully performs bump tasks multiple times.

Highlights

- We introduce VolleyBots, a novel robot sports environment centered on drone volleyball, featuring mixed competitive and cooperative game dynamics, turn-based interactions, and agile 3D maneuvering.
- We release a curriculum of tasks, ranging from single-drone drills to multi-drone cooperative plays and competitive matchups, and baseline evaluations of representative (MA)RL and game-theoretic algorithms.
- We design a rule-based hierarchical policy that achieves a 69.5% win rate against the strongest baseline in the 3 vs 3 task, offering a promising solution for tackling the complex interplay between low-level control and high-level strategy.

Thanks for listening!

VolleyBots: A Testbed for Multi-Drone Volleyball Game Combining Motion Control and Strategic Play



Series of Work Based on VolleyBots:

Mastering Multi-Drone Volleyball through Hierarchical Co-Self-Play Reinforcement Learning [Accepted at CoRL 2025]

JuggleRL: Mastering Ball Juggling with a Quadrotor via Deep Reinforcement Learning [Submitted to ICRA 2026]

