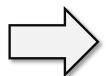


AGENTIF: Benchmarking Instruction Following of Large Language Models in Agentic Scenarios

Yunjia Qi*, Hao Peng*, Xiaozhi Wang, Youfeng Liu, Bin Xu, Lei Hou, Juanzi Li Tsinghua University, Zhipu Ai



Code

Paper

Motivation

- Large Language Models (LLMs) have demonstrated advanced capabilities in real-world agentic applications.
- Agentic scenarios often involve lengthy instructions with complex constraints, such as extended system prompts and detailed tool specifications.
- Following these instructions is essential for task success and demonstrates a core capability of LLMs.
- However, whether LLMs can effectively follow instructions in real-world agentic scenarios remains underexplored.

AGENTIF: Benchmarking Instruction Following of Large Language Models in Agentic Scenarios

An Example of AGENTIF

You are a top-tier code expert. Your objective: use specified predefined functions to write structured, high-quality Python code for <task>. [C1] Task Description 1. Task Structure - <task>: The user-provided task requiring code. When implementing, consider preceding code and execution history. [C2] - If <task> has multiple objectives, complete only the first. [C3] Output comments and code within <code></code> tags. Call the given predefined function at most once. - If outputting file links, save files to /mnt/data. [C4] 2. Available Resources Use the following predefined function(s): search: {'query': {'description': 'Search query', 'type': 'str', 'required': 'True'}, 'recency days': {'description': 'Recency of search results in days', 'type': 'int', 'required': 'False'}} **Example:** Refer to the following example to solve the problem. Note that your response should follow the same format: input: <task>I will use the search function to query "Beijing today temperature" to get today's temperature information for Beijing.</task> output: <code> "1. Use the search function to query "Beijing today temperature" and retrieve relevant search results 2. Print the search results for subsequent analysis. " search result = search(query="Beijing today temperature") print(search result) [C8] </code> Query: <task>I need the latest information on Taylor Swift, including her profession, achievements, recent activities, related images, and videos. To obtain this information, I will use the search function to perform a web search and extract relevant details.</task>

Constraint
Presentation Type

Vanilla Constraint

[C1] [C2] [C3] [C4]

[C5] [C8]

Condition Constraint

[C6]

Constraint Type

Example Constraint

[C7]

Semantic

Formatting

Tool

AGENTIF: the first benchmark for evaluating LLM instruction following in agentic scenarios

- (1) Realistic, constructed from 50 real-world agentic applications.
- (2) Long, averaging 1723 words with a maximum of 15630 words.
- (3) Complex, averaging 11.9 constraints per instruction, covering diverse constraint types, such as tool specifications and condition constraints.

Benchmark	#Inst.	Len.	#Cons.	Data Resource	Constraint Type			Evaluation Method		
					Tool	Conditional	Example	Code-based	LLM-based	
IFEval [37]	541	36	1.5	Synthetic	×	Х	X	/	×	
FollowBench [14]	820	253	3.0	Synthetic	X	×	1	/	✓	
InfoBench [23]	500	38	4.5	Synthetic	×	X	×	×	✓	
SysBench [22]	500	521	2.4	Realistic	X	×	×	×	/	
ComplexBench [29]	1,150	448	4.2	Synthetic	×	✓	×	✓	✓	
AgentOrca [16]	663	1,144	-	Synthetic	1	1	×	✓	×	
Multi-IF [10]	4,501	48	7.1	Synthetic	X	×	×	✓	×	
AGENTIF (ours)	707	1,723	11.9	Realistic	1	✓	✓	✓	✓	

Model Performance on AGENTIF

ISR: Instruction Success Rate CSR: Constraint Success Rate

Models	P	resentation T	ype	Туре			ISR	CSR
	Vanilla Condition		Example	Formatting	Semantic	Tool	1510	Con
[T]GPT-5	61.6	33.7	80.0	64.7	61.7	45.6	30.2	60.8
[T]GLM-4.6	59.2	42.2	87.2	62.1	62.1	49.9	23.1	60.5
[N]Claude-4-Sonnet	59.1	44.3	83.6	62.2	62.2	45.5	21.5	60.1
[T]o1-mini	59.8	37.5	80.8	66.1	59.1	43.2	26.9	59.8
[N]Claude-3-7-Sonnet	60.9	38.9	69.2	60.1	61.3	50.9	23.3	59.5
[N]GPT-4o	58.0	35.1	80.8	65.8	56.5	43.2	26.4	58.5
[T]Qwen3-32B	57.5	41.1	80.6	57.7	62.5	45.7	24.9	58.4
[T]QwQ-32B	57.5	35.6	82.7	61.4	59.4	43.2	27.2	58.1
[T]DeepSeek-R1	56.1	41.4	87.0	61.4	58.9	44.4	22.2	57.9
[T]GLM-Z1-32B	56.7	37.9	83.6	60.2	59.6	43.1	23.8	57.8
[N]DeepSeek-V3	54.9	41.5	84.5	59.3	58.9	40.8	21.9	56.7
[N]Claude-3-5-Sonnet	57.3	36.9	69.2	61.5	56.0	43.3	24.9	56.6
[N]Meta-Llama-3.1-70B-Instruct	55.1	35.0	84.3	61.6	55.6	42.8	20.9	56.3
[T]DeepSeek-R1-Distill-Qwen-32B	54.5	39.6	73.1	55.7	57.2	45.2	20.7	55.1
[T]DeepSeek-R1-Distill-Llama-70B	55.4	37.7	69.2	56.5	56.6	44.1	19.9	55.0
[N]Meta-Llama-3.1-8B-Instruct	53.5	36.6	71.4	55.6	54.8	43.5	19.9	53.6
[S]Crab-DPO-7B	48.3	24.3	57.5	48.8	47.4	41.9	10.1	47.2
[N]Mistral-7B-Instruct-v0.3	47.9	29.2	53.8	47.0	48.6	39.8	11.5	46.8
[S]Conifer-DPO-7B	45.6	27.0	50.5	42.0	46.9	41.8	10.7	44.3

All models demonstrate suboptimal performance

[N] denotes non-thinking models

[T] denotes thinking models

[S] denotes models explicitly designed for instruction following by the academic community.

Model Performance on AGENTIF

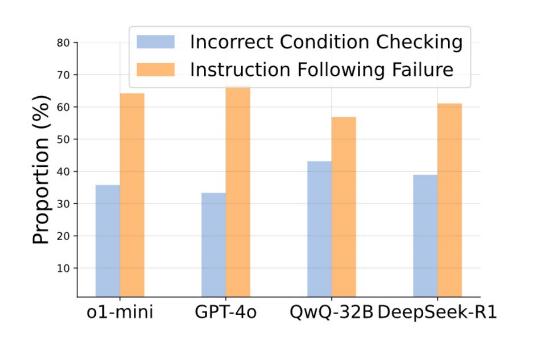
Models	P	resentation Ty	ype	Туре			ISR	CSR
11200015	Vanilla	Condition	Example	Formatting	Semantic	Tool	1011	COIL
[T]GPT-5	61.6	33.7	80.0	64.7	61.7	45.6	30.2	60.8
[T]GLM-4.6	59.2	42.2	87.2	62.1	62.1	49.9	23.1	60.5
[N]Claude-4-Sonnet	59.1	44.3	83.6	62.2	62.2	45.5	21.5	60.1
[T]o1-mini	59.8	37.5	80.8	66.1	59.1	43.2	26.9	59.8
[N]Claude-3-7-Sonnet	60.9	38.9	69.2	60.1	61.3	50.9	23.3	59.5
[N]GPT-4o	58.0	35.1	80.8	65.8	56.5	43.2	26.4	58.5
[T]Qwen3-32B	57.5	41.1	80.6	57.7	62.5	45.7	24.9	58.4
[T]QwQ-32B	57.5	35.6	82.7	61.4	59.4	43.2	27.2	58.1
[T]DeepSeek-R1	56.1	41.4	87.0	61.4	58.9	44.4	22.2	57.9
[T]GLM-Z1-32B	56.7	37.9	83.6	60.2	59.6	43.1	23.8	57.8
[N]DeepSeek-V3	54.9	41.5	84.5	59.3	58.9	40.8	21.9	56.7
[N]Claude-3-5-Sonnet	57.3	36.9	69.2	61.5	56.0	43.3	24.9	56.6
[N]Meta-Llama-3.1-70B-Instruct	55.1	35.0	84.3	61.6	55.6	42.8	20.9	56.3
TDeepSeek-R1-Distill-Qwen-32B	54.5	39.6	73.1	55.7	57.2	45.2	20.7	55.1
[T]DeepSeek-R1-Distill-Llama-70B	55.4	37.7	69.2	56.5	56.6	44.1	19.9	55.0
[N]Meta-Llama-3.1-8B-Instruct	53.5	36.6	71.4	55.6	54.8	43.5	19.9	53.6
[S]Crab-DPO-7B	48.3	24.3	57.5	48.8	47.4	41.9	10.1	47.2
[N]Mistral-7B-Instruct-v0.3	47.9	29.2	53.8	47.0	48.6	39.8	11.5	46.8
[S]Conifer-DPO-7B	45.6	27.0	50.5	42.0	46.9	41.8	10.7	44.3

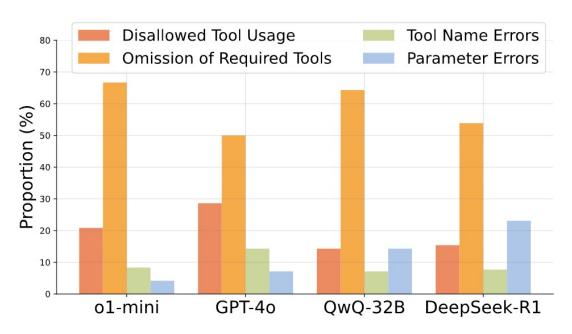
[N] denotes non-thinking models

[T] denotes thinking models

Models

perform much

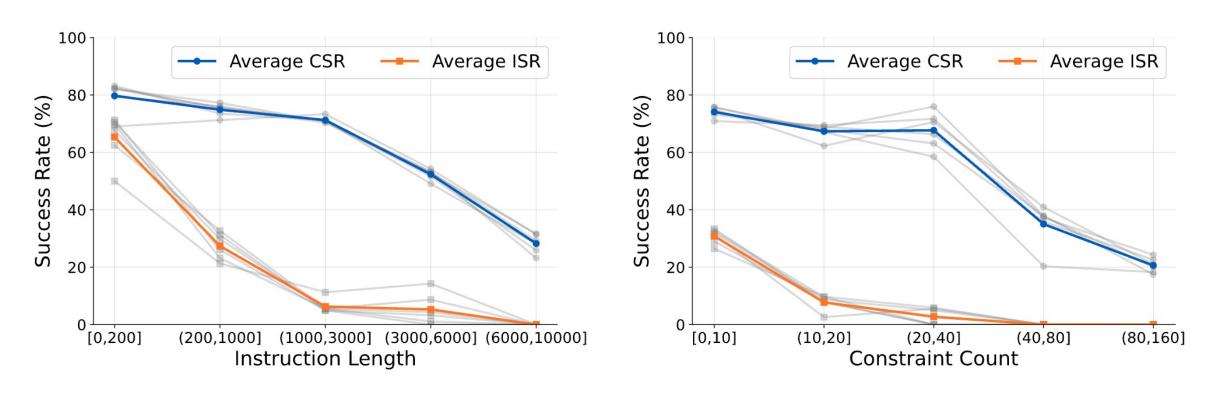

lower on the


condition and

tool constraint

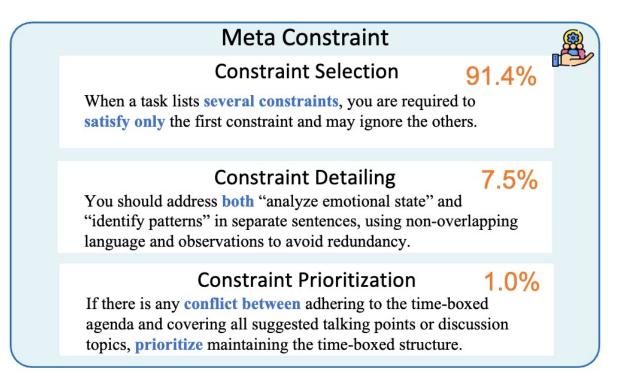
[S] denotes models explicitly designed for instruction following by the academic community.

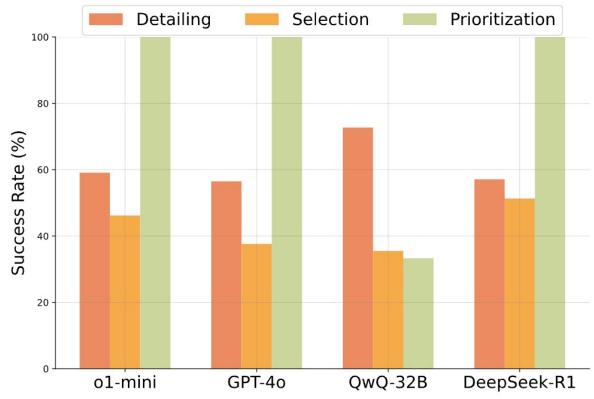
Analysis of Condition and Tool Constraint


Condition Constraint:

A substantial portion (above 30%) of errors is due to incorrect condition checks

Tool Constraint:


- (1) Disallowed tool usage and omission of required tools constitute the primary errors.
- (2) Thinking models more frequently neglect the required tools.


Analysis of Instruction Length and Constraint Quantity

- Model performance generally declines with increasing instruction length or constraint count.
- When the sequence length exceeds 3,000 and the number of constraints is greater than 40, the model's performance exhibits a sharp decline, which may stem from increased task difficulty as well as insufficient relevant training data.

Analysis of Meta Constraints

Unlike regular constraints that apply directly to the model's response, meta constraints govern other constraints

Conclusion

- We propose AgentIF, a benchmark for evaluating instruction following in realistic agentic scenarios with long, detailed instructions and complex constraints. We believe AgentIF is valuable to the community for building robust agentic applications.
- We conduct comprehensive evaluations using AgentIF and draw several insights. Our results show that even the best-performing LLM follows fewer than 30% of instructions perfectly, demonstrating the difficulty and necessity of AgentIF.
- We conduct further analyses, including error analysis, instruction length, and meta instructions, which reveal specific limitations of existing LLMs and potential directions for future optimization.

Agentif

Thanks for Listening!

Contact: qyj23@mails.tsinghua.edu.cn

