

REFED: A Subject Real-time Dynamic Labeled EEG-fNIRS Synchronized Recorded Emotion Dataset

Xiaojun Ning¹, Jing Wang^{1,*}, Zhiyang Feng¹, Tianzuo Xin¹, Shuo Zhang¹, Shaoqi Zhang¹, Zheng Lian², Yi Ding³, Youfang Lin¹, Ziyu Jia^{2,*}

¹ Beijing Jiaotong University
² Institute of Automation, Chinese Academy of Sciences
³ Nanyang Technological University

https://refed-dataset.github.io/

Motivation

◆ Affective brain-computer interfaces (aBCIs) play a crucial role in personalized human—computer interaction and neurofeedback modulation.

□ Multimodal brain signals:

- **EEG** captures neural electrical responses and is most widely used to explore the brain's spatial-temporal patterns of emotions.
- fNIRS measures the cerebral blood flow activity and holds potential for investigating emotional mechanisms.

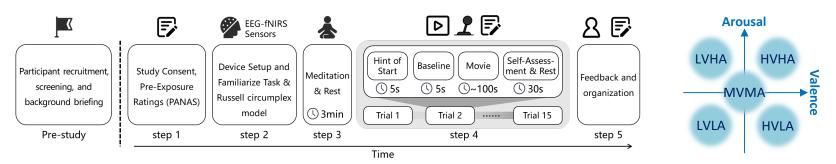
□ *Dynamic emotion annotations:*

- Emotional experiences are inherently dynamic and subjective.
- Traditional static labels are lack temporal dynamics and inaccurate.

To the best of our knowledge, there is no publicly available aBCI dataset simultaneously records *multimodal brain signals* and provides *real-time dynamic emotion annotation*.

REFED – Subject Real-time Dynamic Labeled EEG-fNIRS Synchronized Recorded Emotion Dataset

Recording Details

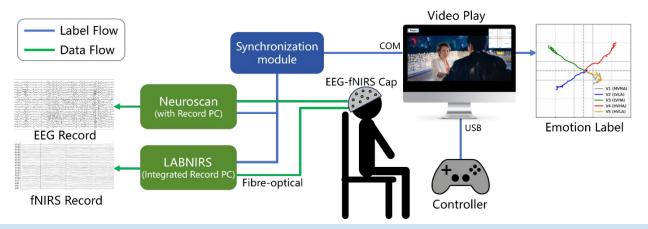


■ Recording Protocol

- All processes last about 1.5 hours per subject, in which video watching phase lasts for 40 mins.
- 15 emotional clips are selected to induce 5 distinct emotions (based on valence-arousal).
- During each video watching trial, participants are required to provide real-time feedback for their emotional state (valence-arousal) using an Xbox controller.
- After each video watching trial, participants are required to complete the SAM questionnaire.

Participants

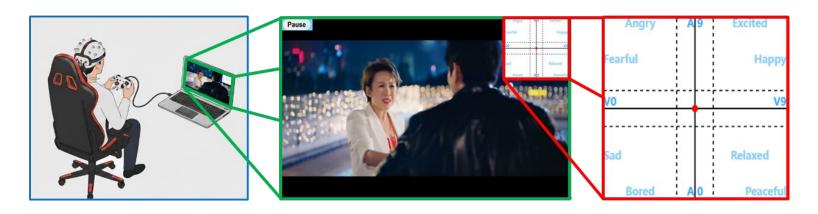
We recruited 32 healthy adults (22 males, 10 females), aged 18 to 34.



Recording Details

Devices

- EEG: ESI Neuroscan 64-channel EEG system
- fNIRS: Shimadzu LABNIRS fNIRS system (51 channels)
- EEG-fNIRS joint cap
- Synchronization module (for synchronizing EEG, fNIRS, and annotation time frames)
- Xbox controller (for moving the valence-arousal coordinate points)



Recording Details

■ Video playback and real-time labeling

- A **real-time labeling and control system** is well developed, to control the recording progress, automate video playback, and automatic emotion annotation.
- During video, a 2D valence-arousal coordinate system is displayed in the top-right corner.
- Participants can instantly adjust the position of the red coordinate points using the joystick on the controller to reflect their emotional changes.

Dataset Details

□ EEG-fNIRS data

- 480 trials (32 participants × 15 emotion-inducing video clips, about 820 minutes in total)
- Sampling frequency: EEG at 1000 Hz, and fNIRS at 47.62 Hz.

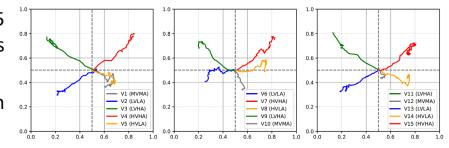
■ Emotion annotations

- Dynamic emotion labels at 1Hz (valence and arousal, synchronously recorded during trials).
- Self-reported ratings (valence, arousal, dominance, and familiarity, after each trial).

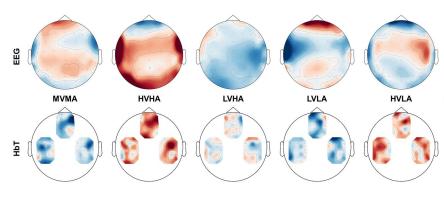
■ Available usages

- Discrete Emotion Recognition Tasks
- Valence / Arousal Classification Tasks
- Valence / Arousal Regression Tasks
- Pattern Discovery in EEG / fNIRS During Emotional Shifts
- Mechanistic Study of Emotion-Induced Electrophysiological / Hemodynamic Responses

•



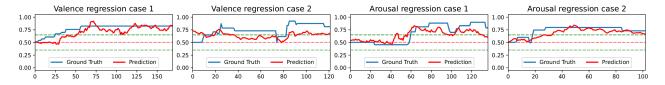
Analysis


■ Label Analysis

- The average valence-arousal trajectory for 15 video clips indicates that the emotion induction is effective and consistent with expectations.
- Self-reported SAM scores are also consistent with dynamic trajectories.

■ Visualization

- Brain regions show distinct activation patterns under different emotions.
- The EEG and fNIRS views share some consistencies while also complementing each other.
- This is related to the underlying neurovascular coupling mechanism.


Analysis

□ Supervised Learning

- Supervised learning models are employed to validate the performance for valence/arousal classification/regression tasks.
- 3-class classification can achieve accuracy > 60%.
- Regression can capture consistent emotional trends.
- EEG+fNIRS outperforms single-modality tests, indicating that EEG and fNIRS features can complement and enhance each other.

Modality	Valence - Classification		Arousal - Classification		Valence - Regression		Arousal - Regression	
	Accuracy ↑	F1-score ↑	Accuracy ↑	F1-score ↑	MAE ↓	MSE ↓	MAE ↓	MSE ↓
EEG	0.5961 ± 0.1020	0.3965 ± 0.0848	0.6527 ± 0.1175	0.3720 ± 0.0750	0.1822 ± 0.0432	0.0588 ± 0.0247	0.1542±0.0404	0.0402 ± 0.0181
fNIRS	0.6199 ± 0.1016	0.4485 ± 0.1088	$0.6645 {\pm} 0.1217$	$0.3956 {\pm} 0.0801$	$0.1716 {\pm} 0.0413$	$0.0542 {\pm} 0.0248$	$0.1453 {\pm} 0.0411$	0.0376 ± 0.0194
EEG+fNIRS	0.6269 ± 0.1005	$0.4611 {\pm} 0.1071$	$0.6701 \scriptstyle{\pm 0.1171}$	$0.4060 {\pm} 0.0892$	$0.1705 {\pm} 0.0409$	$0.0531 {\pm} 0.0236$	$0.1445 {\pm} 0.0401$	$0.0369 {\pm} 0.0182$

Conclusion

- √ This study proposes the REFED dataset, an affective BCI dataset
 with multimodal brain signals and real-time dynamic emotion
 annotations.
- ✓ By recording EEG and fNIRS signals synchronously, the REFED realizes the joint observation of neuroelectrical activity and hemodynamic response under emotional inducing.
- ✓ Experimental validation shows that the dataset meets standards for both emotion inducing validity and labeling reliability.
- ✓ Further details and access to the dataset can be found at: https://refed-dataset.github.io/

REFED Dataset Summary						
Motivation						
(EEG-fNIRS) and real-tir Example Use Case: Em Valence/Arousal regress	Ning, J. Wang, Z. Feng, T. Xin, S. Zhang, S. Zhang,					
Metadata						
Hosting Platform Keywords Affe Format Ethical Review Approve License	Hugging Face (https://huggingface.co/) ective BCI, EEG, fNIRS, Real-time label, EEG-fNIRS .mat, .csv al IRB-CASIA CC BY-NC-SA					
Sensors						
EEG fNIRS	ESI Neuroscan, 64 channels, 200Hz Shimadzu LABNIRS, 51 channels, 47.6Hz					
Annotations						
Dynamic Emotion Self-Assessments Other Data	Valence and arousal Valence, arousal, dominance, and familiarity PANAS scales					
Participants						
Count Gender Age Criteria	32 22 male, 10 female 18~34 (M=21.3, SD=2.7) Healthy adults					
Dataset Size						
Record Duration Total Size	about 820 minutes (Emotion Inducing) 40 minutes (Baselines Total) about 30 GB (Raw Data)					

Thank you!

REFED: A Subject Real-time Dynamic Labeled EEG-fNIRS Synchronized Recorded Emotion Dataset

Xiaojun Ning, Jing Wang, Zhiyang Feng, Tianzuo Xin, Shuo Zhang, Shaoqi Zhang, Zheng Lian, Yi Ding, Youfang Lin, Ziyu Jia