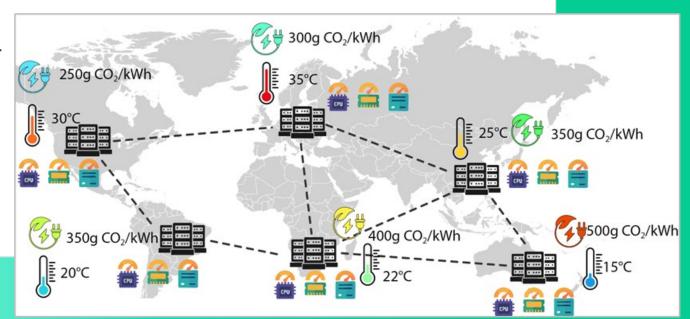


DCcluster-Opt: Benchmarking Dynamic Multi-Objective Optimization for Geo-Distributed Data Center Workloads

Antonio Guillen-Perez*, Avisek Naug*, Vineet Gundecha, Sahand Ghorbanpour, Ricardo Luna Gutierrez, Ashwin Ramesh Babu, Munther Salim, Shubhanker Banerjee, Eoin H. Oude Essink, Damien Fay, Soumyendu Sarkar*

HPE Labs @ Hewlett Packard Enterprise



DCClusterOpt: HPC Cloud Optimization

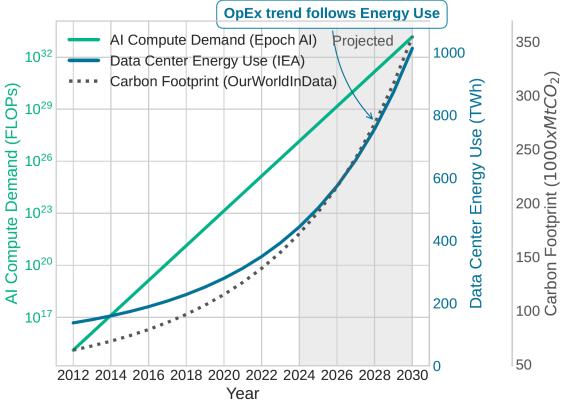
With Multi-Agent Reinforcement Learning and LLMs

NeurIPS 2025 – Datasets & Benchmarks Track

The Challenge: Al's Unsustainable Footprint

- The computational demand of foundation models is growing exponentially, forcing a shift to vast, geodistributed HPC ecosystems.
- This creates an unsustainable rise in energy demands, carbon footprint, and operational costs

The Challenge: Al's Unsustainable Growth



^[1] https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year

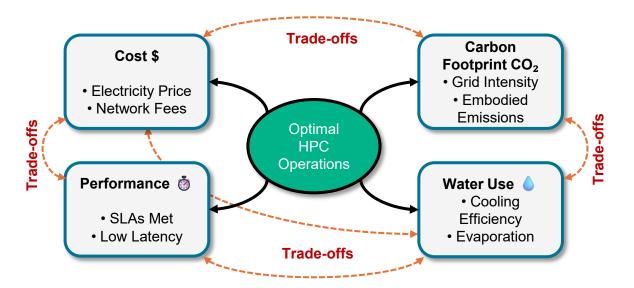
^[2] https://www.iea.org/data-and-statistics/charts/global-data-centre-electricity-consumption-by-equipment-base-case-2020-2030

^[3] https://ourworldindata.org/grapher/carbon-intensity-electricity?tab=line&time=earliest..2024&country=EU-27~OWID WRL

Motivation & The Gap

The Problem: Al's Footprint vs. The Reality Gap

Managing global HPC infrastructure is a massive operations research problem, requiring trade-offs between conflicting goals:



The Problem: Al's Footprint vs. The Reality Gap

Progress is blocked by a lack of realistic testbeds. Existing research is siloed and often:

- Uses abstract or simplified physical models.
- Optimizes either scheduling or cooling, but not both.
- Lacks real-world, dynamic environmental data.

We can't deploy trustworthy Al controllers without a realistic, high-fidelity digital twin to train and validate them.

Core Innovation: DCcluster-Opt

Our Contribution: The DCcluster-Opt Benchmark

An open-source, high-fidelity simulation benchmark for sustainable, geo-temporal task scheduling. It is the first to holistically integrate four crucial elements at a global scale:

1. Geo-Distributed Cluster

Models a global cluster across 20+ regions.

2. Real-World Data

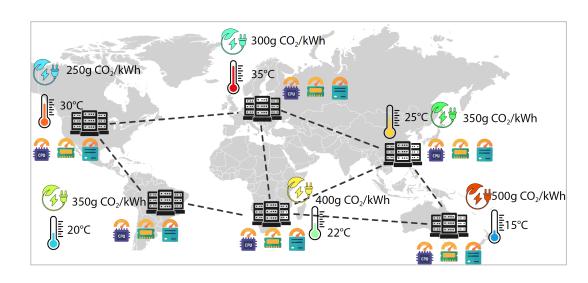
Driven by real Al workload traces, grid carbon, electricity prices, and weather data.

3. Physics-Informed Models

High-fidelity models of all DC physics: IT Load, Network, and Complex Cooling (HVAC, Chillers & Liquid Cooling).

4. Multi-Objective Optimization

A modular reward system to study complex trade-offs (Cost vs. Carbon vs. SLA vs. Water).



Varying Carbon Intensity ▮▮▮▮

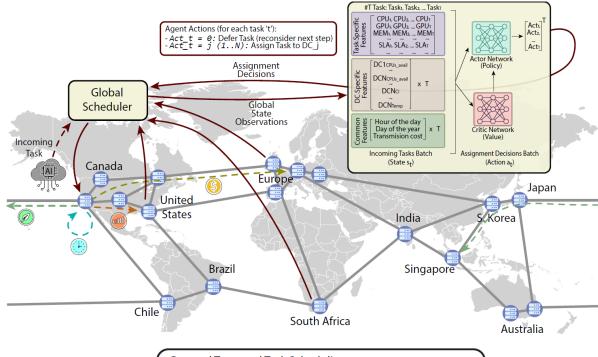
Dynamic Workloads

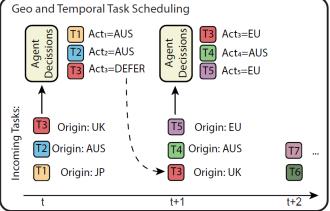
Volatile Energy Prices

Network Latency & Costs

Why it matters: For the first time, we can rigorously test and compare complex AI scheduling strategies on a realistic, globallydistributed, and physically-accurate simulation.

The DCcluster-Opt MDP: Geo-Temporal Task Scheduling





At each 15-minute timestep, the **Global Scheduler** solves a complex Markov Decision Process:

1. Observe State (S)

The agent receives a rich, variable-length state for a batch of `k` pending tasks. For each task, the state includes:

- Task-Specific Features: CPU, GPU, Memory, and SLA requirements.
- DC-Specific Features: Real-time load, energy price, and carbon intensity from all `N` data centers.
- Common Features: Global time of day and year.

2. Take Action (A)

The policy network outputs 'k' individual decisions, one for each task:

- Geographical Action: Assign task to a specific data center `DC_j`.
- Temporal Action: Defer task to be reconsidered in the next timestep.

3. Receive Reward (R)

The agent's goal is to learn a policy that maximizes a global reward signal, which is a weighted sum of:

- Total Energy Cost
- Total Carbon Emissions
- Water usage
- SLA Violations

Al Approach: MARL + LLMs

The Al Control Plane: Agents Optimizing Infrastructure

We move beyond simple heuristics to a hierarchical, Al-driven control system.

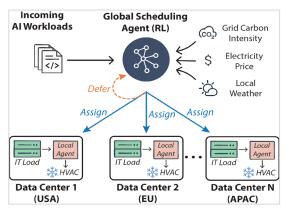
Multi-Agent Reinforcement Learning (MARL)

Global Scheduler (RL Agent): A coordinating agent (SAC, PPO) makes high-level decisions.

- Action 1: Where to run a task? (Geo-placement)
- Action 2: When to run a task? (Temporal deferral)

Local Controllers (RL Agents): Agents inside each DC optimize local physics.

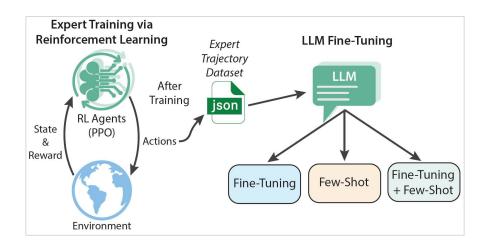
Action 3: How to cool? (Dynamic setpoints for HVAC / Liquid Cooling)



LLM-based Reasoning Controller

Moves beyond "black box" RL to an auditable, "agentic" system.

We use **Policy Distillation** to transfer the expert RL strategy into a flexible LLM controller.

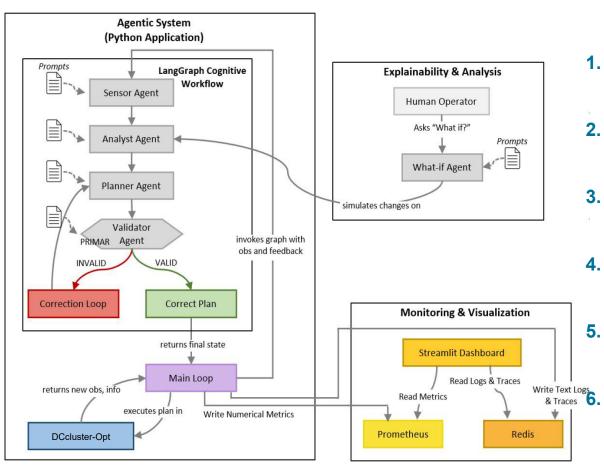


Why it matters: This shows a clear path from complex dynamic optimization (RL) to trustworthy, auditable, and adaptable control (LLMs) required for production HPC systems.

Agentic Design

Architecture: The Digital Twin Feedback Loop

Our agentic system mimics an expert human operations team, creating a transparent and auditable control plane.

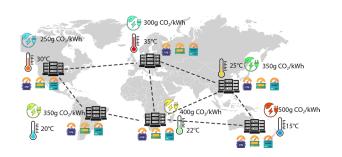


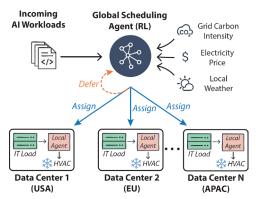
- 1. DCcluster-Opt (Digital Twin): Emits complex, high-dimensional state (IT load, carbon, price, weather, cooling temps).
- Sensor Agent: Translates raw state into semantic JSON for the LLM.
- Analyst & Planner Agents (LLM): Formulates high-level strategy and a concrete, low-level action plan.
- Validator Agent (Guardrail): Inspects the plan for safety, compliance, and correctness.
- Monitor Agent: Observes outcomes and provides qualitative feedback for continuous adaptation.
 - What-if Agent: Allows to create counterfactual situations.

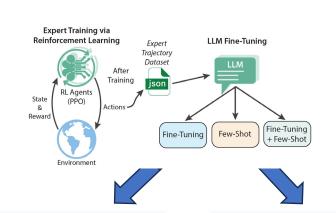
Putting it all together

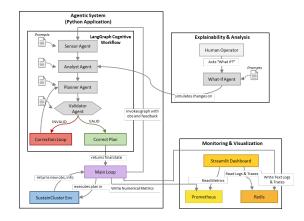
Problem: Sustainable Geo-Distribution of Workloads in HPC Data Center Cluster RL: Multi-agent Multiobjective scheduler resolving external and DC dependencies trajectories textualized and distilled into fine-tuned LLMs

Agentic Mesh: Framework with guard rails and transparency for real-time deployment and analytics







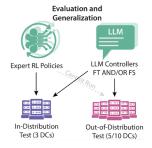


Explainability, Trust, Guidance & Insights

Decision: DC1 routes to DC3, DC2 routes to DC3, DC3 compute on local. SHORT EXPLANATION: Prioritizing DC3 due to its lower carbon intensity level, which reduces the environmental impact of the system.

LONG EXPLANATION: The primary goal of this decision is to minimize the carbon intensity level of the system... In this case, DC3 has a lower carbon intensity level (121.0 gCO2/kWh) compared to DC1 (194.0 gCO2/kWh) and DC2 (120.0 gCO2/kWh). By routing tasks to DC3, we can reduce the overall carbon intensity.—Additionally, DC3 has a lower external temperature (9.3 C) compared to DC1 (25.8 C).—By prioritizing DC3, we can also take advantage of its available CPU and GPU resources (40% and 67%)... This decision is made by considering the trade-offs between the different data centers and their characteristics...

Priority Switching & Generalizability



Grounded in Reality: Real-World Datasets

DCcluster-Opt integrates diverse, real-world data streams to drive the simulation. This is not a synthetic problem.

Data Component	Source(s)	Role & Coverage
Al Workloads	Alibaba Cluster Trace 2020/ MIT*/Marconi Supercomputer*	Real GPU training/inference jobs (>6.5k GPUs)
Carbon Intensity	Electricity Maps	Real-time grid emissions (gCO ₂ eq/kWh) for 20+ global regions.
Electricity Prices	GridStatus.io, ISOs	Dynamic spot market prices (\$/kWh).
Weather	Open-Meteo	Ambient temperatures that drive cooling physics.
Network	Cloud Providers, Persico et al. [2]	Real monetary transfer costs (\$/GB) and empirical latency (ms).

^{*} WIP

Why it matters: The AI controller learns to exploit real, complex patterns, such as scheduling tasks to "follow the renewables" or avoid peak pricing.

[2] V. Persico, et al., "A First Look at Public-Cloud Inter-Datacenter Network Performance," 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 2016, pp. 1-7, doi: 10.1109/GLOCOM.2016.7841498.

Results & Insights

Holistic Al Control Delivers >11% Savings

Comparing our Global Scheduler (SAC) + Local RL HVAC Controller against a baseline with fixed cooling setpoints. (30-day simulation)

Scenario	Total Energy (MWh) ↓	Total CO₂ (t) ↓	Total Cost (\$) ↓	Water usage (m³)
Fixed Baseline	1087.1	328.7	\$101,401	7394.1
Holistic Al Control	921.3	273.1	\$81,300	7253.6

-15.27%
Total
Energy
(MWh)

-16.78%
Total CO₂
Emissions
(t)

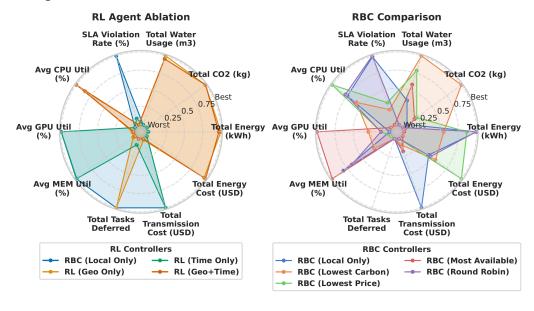
-19.82% Total Cost (\$)

140,500 Liters of Water Saved

Multi-Objective Trade-offs

Rule-based methods (e.g., "Lowest Carbon") excel in one metric but fail in others (e.g., high SLA violations).

Our **RL** (**Geo+Time**) agent learns a balanced policy that navigates the trade-offs defined in the reward function.



Why it matters: Holistic optimization wins. Optimizing scheduling and cooling physics together unlocks double-digit efficiency gains that siloed approaches miss.

From 'What' to 'Why': Trustworthy LLM Controllers

Policy distillation creates a transparent agent that can justify its complex scheduling decisions in natural language.

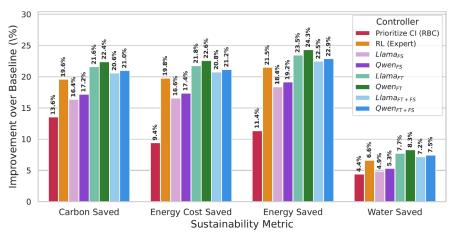
LLM-Generated Decision & Explanation

DECISION: Assign Task T-12 (Origin: US-CAL) to DC3 (DE-LU). Defer Task T-13.

SHORT EXPLANATION: Prioritizing DC3 due to its significantly lower carbon intensity and favorable electricity price, which aligns with our global objective of minimizing environmental impact and cost.

LONG EXPLANATION: The primary goal is to minimize carbon. DC3 (DE-LU) has a current carbon intensity of 112.0 gCO2/kWh, compared to 194.0 gCO2/kWh at the origin DC1 (US-CAL)... By routing this task, we accept a small network cost to gain larger carbon and energy savings...

Sustainability & Efficiency Improvement vs. Baseline RBC



Key Benefits:

- Explainability & Trust: Creates auditable, human-readable logs for operators.
- Adaptability: Objectives can be changed "on-the-fly" with natural language prompts.
- Scalability: Reasoning generalizes to new data centers without costly retraining

Scenario	Controller	Total CO₂ (t) ↓	SLA (%) ↓
5-Datacenters	RBC	62.76	1.48
5-Datacemers	LLM	59.55	1.08
40 Deteceptors	RBC	131.81	1.95
10-Datacenters	LLM	125.10	1.19

Table 2. Generalization (Out-of-Distribution) results

Impact & Business Value

From Simulation to Sustainable Operations

This research provides a direct, actionable blueprint for enterprise and national lab sustainability.

Reduce Operational Costs (OpEx)

Demonstrated >12% reduction in total operational energy costs from holistic AI control.

Optimize Resource Efficiency

Physics-informed models for water usage and Heat Recovery Units (HRUs) allow for minimizing waste.

Meet Enterprise ESG Goals

Quantifiably reduce total CO₂ emissions by >11.5% and enable granular carbon-aware scheduling.

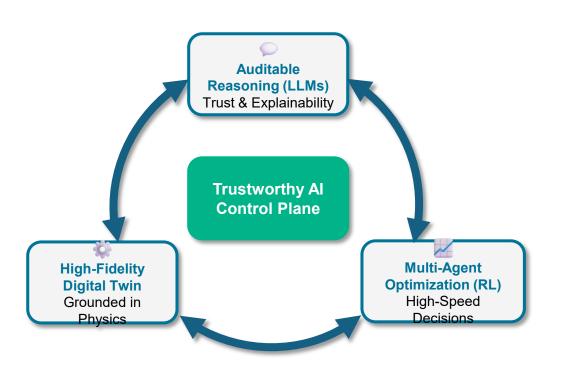
De-Risk Deployment

Develop, audit, and validate Al controllers before deploying them on mission-critical HPC systems.

Broader Vision and Future Work

Towards Self-Optimizing, Net-Zero HPC Clouds

The next generation of scientific infrastructure (like the **American Science Cloud - AmSC**) will be too complex for human operators alone. They require agentic, trustworthy AI control planes.



Addressing Core AmSC Requirements:

- Managing a Geo-Distributed, Heterogeneous System:
 DCcluster-Opt is purpose-built to model the AmSC's federated topology, simulating diverse hardware across locations with unique electricity grids (price & carbon) and network links.
- Sustainable and Cost-Effective Operation:
 Our benchmark provides the essential multi-objective framework
 (Cost, Carbon, Water, SLA) to train an AmSC scheduler to
 verifiably minimize both operational cost and environmental
 impact.
- Trustworthy and Auditable Control:
 DCcluster-Opt serves as a high-fidelity digital twin, allowing Al controllers to be developed, audited, and de-risked before deployment on mission-critical hardware. Our LLM agents show a path to the required explainability.

The Goal: Autonomous, resilient, and sustainable infrastructure that self-optimizes for cost, carbon, and science, 24/7.

Conclusion & Call to Action

Al Optimizing Al: From Simulation to Sustainable Operations

We are releasing the entire Dccluster-Opt ecosystem to provide the robust, standardized sandbox the field has been missing.

Our Contributions:

- **DCcluster-Opt:** A high-fidelity, open-source benchmark integrating global scheduling, real-world data, and complex cooling physics.
- Al Control Plane: A novel hybrid MARL + LLM agentic system for multi-objective optimization.
- Quantifiable Impact: Demonstrated >11% reductions in Cost, Carbon, and Energy.
 - Gymnasium API and Ray RLlib Integration: Compatibility with SOTA libraries (SAC, PPO, APPO, IMPALA).
 - **Discoverable Datasets:** Fully documented with Croissant metadata, a new standard for ML-ready datasets.
- Community-Ready: Open-source and organized to encourage contributions.

Join Us

"We provided the testbed to solve a hard operations problem. Now, let's go play with it."

Paper: Code: O Code:

Code

github.com/HewlettPackard/sustain-cluster

Docs

hewlettpackard.github.io/sustain-cluster/

NeurIPS 2025

Agent Actions (for each task 't'): -Act t = \(\text{g}\): Defer Task (reconsider next step) -Act t = \(\text{g}\): Defer Task (rec

Chile South Africa

Antonio Guillen

Avisek Naug

Vineet Gundecha

Sahand Ghorbanpour

Ricardo Luna

Ashwin R Babu

Munther Salim

Damien Fay

Soumyendu Sarkar

ML Research

@HPE Labs

DCcluster-Opt: Benchmarking Dynamic Multi-Objective Optimization for Geo-Distributed Data Center Workloads soumyendu.sarkar@hpe.com