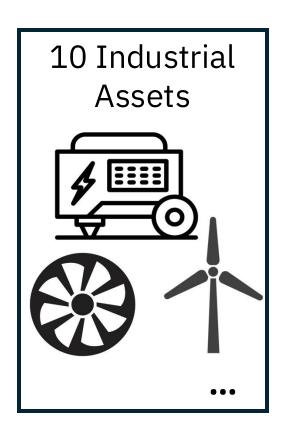
FailureSensorIQ:

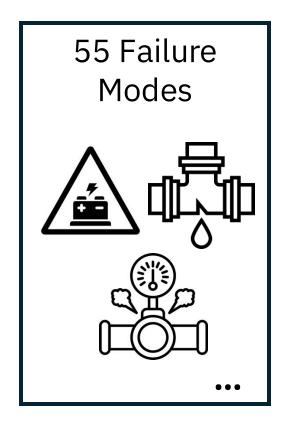
A Multi-Choice QA Dataset for Understanding Sensor Relationships and Failure Modes

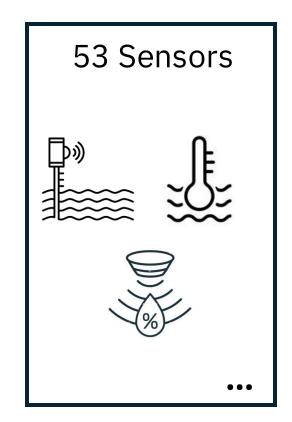
Authors:

Christodoulos Constantinides^{2*} Dhaval Patel^{1*} Shuxin Lin^{1*} Claudio Guerrero² Sunil Dagajirao Patil² Jayant Kalagnanam¹

¹IBM TJ Watson Research Center ²IBM


^{*}Equal contribution


Background: Industrial Assets


2 Personas

Tasks: Failure Mode and Effect Analysis

IoT sensors → capture signals: temperature, vibration, power, etc.

Failure Mode and Effects Analysis (FMEA) links failures ↔ sensors.

Types of queries based on query direction:

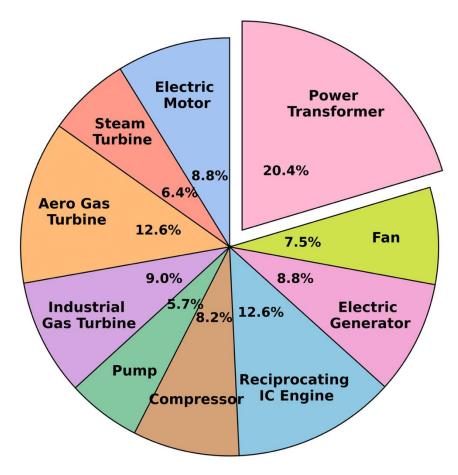
- Failure Mode to Sensors (FM2Sensor)
- Sensor to Failure Mode (Sensor2FM)

Types of queries based on logical reasoning:

- **Selection**: Identify relevant items (∨ present)
- **Elimination**: Identify irrelevant items (∨ absent)

Failure Mode	Sensor/Parameter Reading						
ranure woue	P_{OWer}	S_{peed}	Pressure	$V_ib_{\Gamma_i}$	Тепр.		
Bearing wear		√	✓		✓		
Gear Defect			✓	✓			
Unbalance	√				✓		
Shaft Misalignment	✓	√		✓			
Overheating			✓		✓		

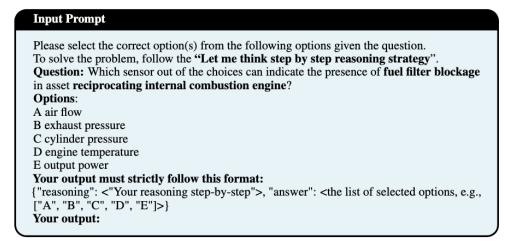
Table 1: Expert Knowledge: Failure Faults \leftrightarrow Sensors/Parameters: \checkmark indicates that parameter or sensor change if failure occurs


IBM **Research**

Dataset Overview

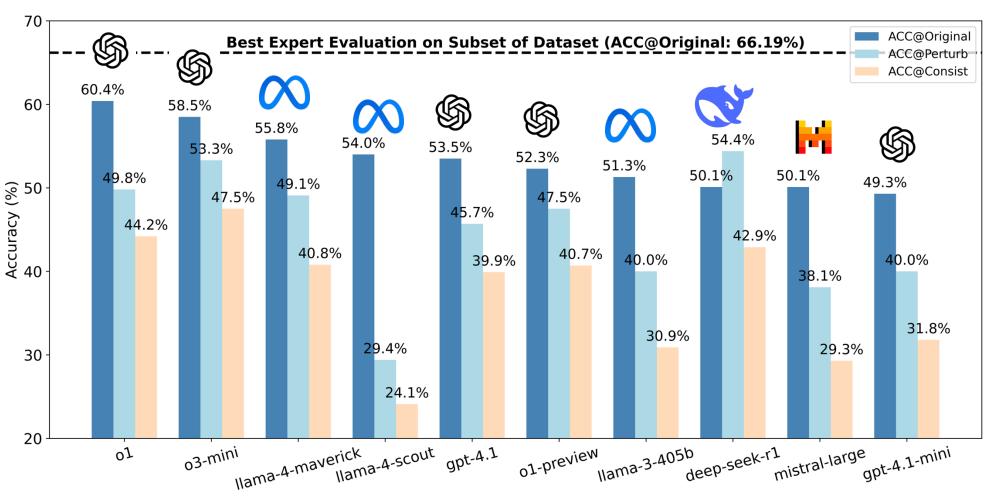
FailureSensorIQ, is a multiple-choice QA dataset that explores the relationships between sensors and failure modes for 10 industrial asset. The dataset consists of 8,296 questions with

- 2,667 single-correct-answer questions (SC-MCQA)
- 5,629 multi-correct-answer questions (MC-MCQA)


The dataset leverages the information found in ISO Standards documents and expert crafted question templates guaranteeing credibility.

FailureSensorIQ: Example Question

<pre>subject string</pre>	id int64	question string	options list	<pre>option_ids list</pre>	<pre>question_first bool</pre>	<pre>correct list</pre>	<pre>text_type string</pre>	<pre>asset_name string</pre>	relevancy string	<pre>question_type string</pre>
failure_mode_sensor_analysis	290	Which sensor out of the choices can indicate the presence of fuel filter blockage in asset reciprocating internal combustion engine?	[air flow,exhaust pressure,cylinder pressure,engine temperature,output power]	[A,B,C,D,E]	true	[false,true,false,false,false]	choice	reciprocating internal combustion engine	relevant_sensors_for_failure_mode	mcp1_positive


Dataset View in HuggingFace (ibm-research/FailureSensorIQ)

LLM Evaluation on FailureSensorIQ

- A comprehensive evaluation pipeline
 - Perturbation
 - Uncertainty
 - Complexity
- 6 Evaluation Metrics
 - Accuracy (Acc@Original)
 - Perturbed Accuracy (Acc@Perturb)
 - Consistency-Based Accuracy (Acc@Consist)
 - Set Size (SS)
 - Coverage Rate (CR)
 - Uncertainty-Adjusted Accuracy (UAcc)

Performance of SC-MCQA

Performance of MC-MCQA

Overall performance suggests that exact selection of multiple true answers remains a difficult task, especially without explicit guidance on how many options are correct.

Table 8: Performance on multi-correct MCQA (2-answer) benchmark using the MC-MCQA approach. EM = exact match.

Model	EM	Precision	Recall	Micro F1	Macro F1	Hamming Loss	Set Size
o3	0.200	0.591	0.710	0.645	0.645	0.313	2.40
o4-mini	0.201	0.590	0.710	0.645	0.644	0.313	2.41
gpt-4.1	0.186	0.590	0.676	0.630	0.630	0.317	2.41
gpt-4.1-mini	0.181	0.580	0.682	0.627	0.626	0.325	2.41
gpt-4.1-nano	0.186	0.586	0.682	0.630	0.630	0.320	2.41
llama-4-maverick	0.184	0.590	0.671	0.628	0.627	0.318	1.80
llama-4-scout	0.205	0.607	0.684	0.643	0.643	0.303	1.94
llama-3-405b	0.196	0.599	0.686	0.640	0.640	0.309	2.40
llama-3-70b	0.185	0.585	0.679	0.629	0.628	0.321	2.55
llama-3-8b	0.178	0.577	0.676	0.623	0.623	0.328	2.56

Other Experiments Conducted

- Impact of Reasoning-Based Prompting
- AI Agent with External Knowledgebase
- Human Evaluation
- LLMFeatureSelect: scikit-learn Transformer

Links

- HuggingFace Dataset:

 https://huggingface.co/dataset
 s/ibm research/FailureSensorIQ
- GitHub Repository:
 https://github.com/IBM/Failur
 eSensorIQ
- Arxiv Paper: https://arxiv.org/abs/2506.03 278

HuggingFace

Arxiv