

MedSG-Bench: A Benchmark for Medical Image Sequences Grounding

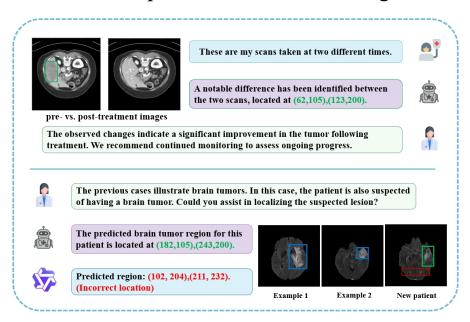
Jingkun Yue¹ Siqi Zhang¹ Zinan Jia¹ Huihuan Xu¹ Zongbo Han¹ Xiaohong Liu² Guangyu Wang^{1*}

¹State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications ²South China Hospital, Medical School, Shenzhen University

NeurIPS 2025 Datasets and Benchmarks Track spotlight

Contact: yuejk@bupt.edu.cn

Home Page: https://github.com/Yuejingkun/MedSG-Bench


- 1. Motivation
- 2. MedSG-Bench
- 3. Evaluation
- 4. Conclusion

Motivation

- □ Visual grounding is crucial in medical imaging, where understanding the semantic content of clinical text and accurately localizing the corresponding pathological regions is essential for interpretable and reliable diagnosis.
- Real world clinical diagnosis inherently requires sequential image analysis (e.g., pre- vs. post- treatment images).
- However, existing medical visual grounding benchmarks mainly focus on single-image scenarios.
- ☐ To address this gap, we introduce **MedSG-Bench**, the first benchmark tailored for **Med**ical Image Sequences Grounding.

Benchmark	Size	Task	Multi-modality	Multi-organ	Image-Sequence	FG	Max Length						
	Understanding-oriented medical benchmarks												
VQA-RAD[33]	3K	11	✓	/	X	X	1						
SLAKE* [29]	2K	10	✓	✓	×	1	1						
OmniMedVQA 34	128K	5	✓	✓	X	X	1						
GMAI-MMBench 30	26K	18	✓	✓	×	1	1						
Medical-Diff-VQA* 31	70K	7	X	×	✓	X	2						
MMXU* 9	3K	3	×	×	✓	✓	2						
		Grou	ınding-oriented m	edical benchma	ırks								
MS-CXR* 7	1K	1	Х	Х	Х	1	1						
MeCoVQA-G* 8	2K	1	✓	✓	×	✓	1						
MedSG-Bench	9K	8	✓	✓	✓	✓	6						

- 1. Motivation
- 2. MedSG-Bench
- 3. Evaluation
- 4. Conclusion

MedSG-Bench

- MedSG-Bench is the first benchmark specifically designed to evaluate the grounding capabilities of MLLMs in
 - medical image sequences.
- ☐ Construction protocol
 - Data collection
 - Data review and quality filtering
 - Data preprocessing
 - VQA generation
- Data description
 - 76 publicly available datasets
 - 10 medical imaging modalities
 - 114 clinical tasks
 - 9,630 VQA pairs (24,341 medical images)

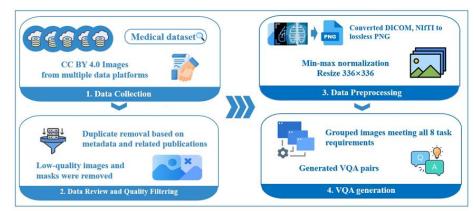


Figure 4: Overview of the MedSG-Bench construction protocol.

Table 2: Detailed statistics of MedSG-Bench.

Task	#Datasets	#Modalities	#Clinical Tasks	Max Length
Registered Difference Grounding	50	10	59	2
Non-registered Difference Grounding	50	10	58	2
Multi-view Grounding	30	4	75	3
Object Tracking	30	4	87	6
Visual Concept Grounding	49	10	87	2
Visual Patch Grounding	53	10	78	5
Cross-modal Grounding	24	4	28	4
Referring Grounding	9	8	28	3
MedSG-Bench	76	10	114	6

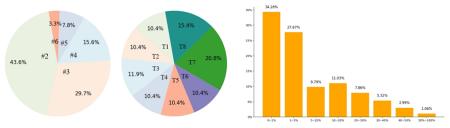
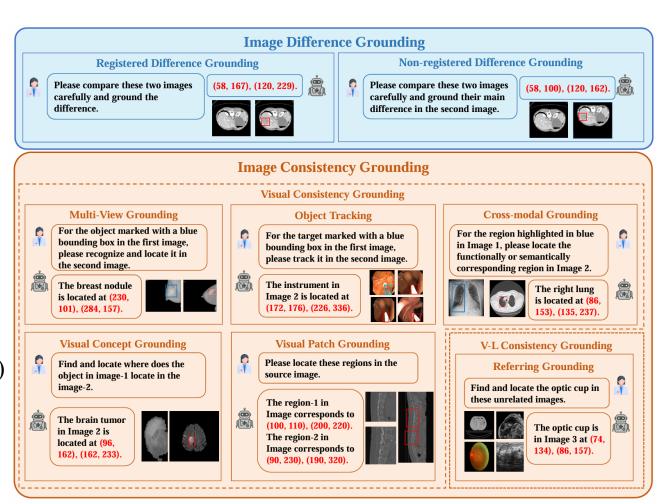



Figure 5: Proportions of image sequence length (**left**), data distribution across tasks (**middle**), and target-to-image size ratios (**right**) in MedSG-Bench.

MedSG-Bench

- MedSG-Bench defines eight tasks grouped into two core paradigms
 - ☐ Image Difference Grounding (2 tasks)
 - ☐ Image Consistency Grounding (6 tasks)
 - ☐ Visual Consistency Grounding
 - V-L Consistency Grounding
- MedSG-188K & MedSeq-Grounder
 - Ensure diversity and mitigate potential bias by employing multiple LLMs
 - 188,163 VQA samples (324,359 medical images)
 - MedSeq-Grounder is developed based on the Qwen2.5-VL-7B

- 1. Motivation
- 2. MedSG-Bench
- 3. Evaluation
- 4. Conclusion

Evaluation

■ We benchmark a diverse collection of MLLMs on MedSG-Bench ■ Proprietary MLLMs ☐ GPT-40, Claude Sonnet 4, Gemini 2.5 Pro ☐ General-purpose MLLMs □ Qwen2.5-VL, InternVL3... ■ Medical-domain specialized MLLMs ■ MedGemma, HuatuoGPT-Vision... ☐ Zero-shot setting ■ Metric: IoU and Acc@0.5

	IDG			ICG						
Model	Size	RDG	NRDG	MV	OT	VCG	VPG	CMG	RG	Avg
			Proprie	tary MLI	Ms					
⑤ GPT-40 10	-	2.42 0.40	3.45 0.20	16.51 8.62	28.19 23.90	13.18 4.70	38.05 26.40	16.02 4.95	23.08 18.02	17.70 10.6
** Claude Sonnet 445	-	0.67	0.81 0.10	12.56 3.57	23.11 16.50	6.93 1.40	27.44 13.80	9.04 1.80	19.57 10.80	12.5 5.76
Gemini 2.5 Pro 48	-	9.36 3.20	7.29 2.00	14.26 6.71	19.32 13.80	14.94 10.70	41.11 49.20	24.44 28.12	28.12 22.67	20.6 15.6
			General-p	urpose M	LLMs					
Qwen2.5-VL	3B	0.59 0.30	1.62 1.30	7.12 3.90	21.32 16.80	6.98 0.80	27.36 3.40	10.02 1.65	12.99 6.82	10.9 4.20
Qwen2.5-VL	7B	0.88 0.30	1.25 0.00	8.48 3.73	22.41 17.80	4.22 1.00	28.87 5.70	16.29 4.45	12.58 6.21	12.3 4.90
Qwen2.5-VL[[]]	32B	2.69 1.40	3.48 1.20	7.35 2.61	19.12 13.40	6.53 1.30	26.92 7.10	12.59 4.90	18.71 11.67	12.4 5.7
Qwen2.5-VL[III]	72B	4.37 2.60	3.46 0.80	7.22 2.78	13.11 7.70	10.33 3.50	26.45 6.30	16.32 7.00	20.19 14.10	13.3 6.1
MiniCPM-V-2_6[49]	8B	1.36 0.00	1.50 0.00	15.82 5.20	24.03 18.50	9.90 2.10	28.65 12.20	12.72 3.30	12.44 3.64	13.2 5.2
MiniCPM-O-2_6 50	8B	1.69 0.10	1.63 0.00	12.11 2.43	15.25 9.60	9.88 1.70	22.96 9.20	9.53 2.35	8.82 2.02	10.1 3.2
mPLUG-Owl3[51]	7B	2.12 0.00	2.55 0.00	15.64 3.64	15.62 4.40	6.80 0.80	30.42 3.60	17.06 4.80	11.92 5.47	13.2 3.19
Mantis-Idefics2 52	8B	0.49	0.62	18.69 8.59	28.04 23.50	6.27 0.50	10.26 1.10	9.59 0.95	6.05 0.54	9.9 (3.9)
LLaVA-OneVision 53	7B	1.09 0.00	0.01	9.26 1.13	10.50 3.20	11.33 1.80	22.20 5.30	19.08 6.70	17.11 5.67	12.3 3.4
LLaVA-OneVision[53]	72B	2.58 0.80	2.87 0.90	11.74 1.39	9.61 2.30	10.95 3.30	32.38 20.30	16.24 5.40	15.43 6.68	13.2 5.1
InternVL3 54	8B	1.07 0.30	1.20 0.00	14.36 4.42	13.30 6.50	6.43 0.90	18.73 4.60	4.73 1.15	15.16 7.42	9.20 3.19
InternVL3 54	14B	0.66	0.71 0.00	13.24 5.31	19.77 13.00	8.60 2.10	13.17 2.40	10.87 3.70	14.57 7.76	10.5 4.4
InternVL3 54	38B	0.98 0.10	1.76 0.20	12.99 4.79	19.27 13.60	7.63 2.10	17.76 2.90	6.47 1.75	16.59 10.05	10.3
InternVL3 54	78B	0.20	0.53 0.00	6.35 2.43	13.03 8.00	3.57 0.90	11.81 2.50	3.34 0.85	12.76 8.10	6.4 2.9
Migician [28]	7B	15.26 7.80	14.49 6.10	18.16 7.84	21.38 14.90	14.23 7.20	28.87 13.70	21.41 12.15	25.30 18.02	20.2 11.3
		Medi	cal-domaiı	ı specializ	ed MLLN	Ms				
G MedGemma 55	4B	0.45 0.00	0.84	7.80 4.53	26.82 22.40	11.31 0.90	26.59 15.40	5.92 0.50	10.01 1.01	10.5 4.82
HuatuoGPT-Vision 12	7B	1.35 0.00	1.84 0.20	10.42 2.78	14.57 9.20	7.99 0.80	15.52 2.30	9.46 2.15	9.60 1.82	8.9° 2.30
HuatuoGPT-Vision 12	34B	1.44 0.00	2.15 0.00	9.41 1.65	13.25 8.30	6.43 0.70	14.53 1.40	10.60 2.60	8.60 1.75	8.5 ′ 2.0
MedSeq-Grounder (Ours)	7B	83.29 93.20	83.72 94.10	55.03 60.19	62.10 67.20	74.11 82.60	85.25 98.80	78.77 82.75	60.43 65.59	72.5 79.7

Evaluation

Finding 1: Grounding in medical image sequences is still challenging
for all MLLMs

- ☐ Finding 2: All MLLMs exhibit limitations in detecting small medical targets
- ☐ Finding 3: Medical-domain specialized models are often worse than general-purpose models
- ☐ Finding 4: Larger or newer models do not guarantee improved grounding performance

		n	DG	ICG						
Model	Size	RDG	NRDG	MV	OT	VCG	VPG	CMG	RG	Avg.
		'	Proprie	tary MLI	Ms					
\$ GPT-40 10	-	2.42 0.40	3.45 0.20	16.51 8.62	28.19 23.90	13.18 4.70	38.05 26.40	16.02 4.95	23.08 18.02	17.70 10.60
* Claude Sonnet 445	-	0.67 0.00	0.81 0.10	12.56 3.57	23.11 16.50	6.93 1.40	27.44 13.80	9.04 1.80	19.57 10.80	12.51 5.76
Gemini 2.5 Pro 48	-	9.36 3.20	7.29 2.00	14.26 6.71	19.32 13.80	14.94 10.70	41.11 49.20	24.44 28.12	28.12 22.67	20.66 15.61
			General-p	urpose M	LLMs					
Qwen2.5-VL	3В	0.59 0.30	1.62 1.30	7.12 3.90	21.32 16.80	6.98 0.80	27.36 3.40	10.02 1.65	12.99 6.82	10.94 4.20
Qwen2.5-VL	7B	0.88 0.30	1.25 0.00	8.48 3.73	22.41 17.80	4.22 1.00	28.87 5.70	16.29 4.45	12.58 6.21	12.3 4.90
Qwen2.5-VL	32B	2.69 1.40	3.48 1.20	7.35 2.61	19.12 13.40	6.53 1.30	26.92 7.10	12.59 4.90	18.71 11.67	12.47 5.71
Qwen2.5-VL	72B	4.37 2.60	3.46 0.80	7.22 2.78	13.11 7.70	10.33 3.50	26.45 6.30	16.32 7.00	20.19 14.10	13.35 6.12
MiniCPM-V-2_6[49]	8B	1.36 0.00	1.50 0.00	15.82 5.20	24.03 18.50	9.90 2.10	28.65 12.20	12.72 3.30	12.44 3.64	13.24 5.27
MiniCPM-O-2_6 50	8B	1.69 0.10	1.63 0.00	12.11 2.43	15.25 9.60	9.88 1.70	22.96 9.20	9.53 2.35	8.82 2.02	10.13 3.23
MPLUG-Owl3 51	7B	2.12 0.00	2.55 0.00	15.64 3.64	15.62 4.40	6.80 0.80	30.42 3.60	17.06 4.80	11.92 5.47	13.23 3.19
Mantis-Idefics2 52	8B	0.49	0.62	18.69 8.59	28.04 23.50	6.27 0.50	10.26 1.10	9.59 0.95	6.05 0.54	9.9 0 3.91
LLaVA-OneVision 53	7B	1.09 0.00	0.01	9.26 1.13	10.50 3.20	11.33 1.80	22.20 5.30	19.08 6.70	1 7.11 5.67	12.39 3.47
LLaVA-OneVision 53	72B	2.58 0.80	2.87 0.90	11.74 1.39	9.61 2.30	10.95 3.30	32.38 20.30	16.24 5.40	15.43 6.68	13.2 5.18
InternVL3 54	8B	1.07 0.30	1.20 0.00	14.36 4.42	13.30 6.50	6.43 0.90	18.73 4.60	4.73 1.15	15.16 7.42	9.26 3.19
InternVL3 54	14B	0.66 0.00	0.71 0.00	13.24 5.31	19.77 13.00	8.60 2.10	13.17 2.40	10.87 3.70	14.57 7.76	10.5 4.41
InternVL3 54	38B	0.98 0.10	1.76 0.20	12.99 4.79	19.27 13.60	7.63 2.10	17.76 2.90	6.47 1.75	16.59 10.05	10.3° 4.44
InternVL3 54	78B	0.20	0.53 0.00	6.35 2.43	13.03 8.00	3.57 0.90	11.81 2.50	3.34 0.85	12.76 8.10	6.44 2.90
Migician 28	7B	15.26 7.80	14.49 6.10	18.16 7.84	21.38 14.90	14.23 7.20	28.87 13.70	21.41 12.15	25.30 18.02	20.29 11.39
_		Medi	cal-domair	specializ	ed MLLN	⁄Is				
G MedGemma 55	4B	0.45 0.00	0.84 0.00	7.80 4.53	26.82 22.40	11.31 0.90	26.59 15.40	5.92 0.50	10.01 1.01	10.5: 4.82
HuatuoGPT-Vision 12	7B	1.35 0.00	1.84 0.20	10.42 2.78	14.57 9.20	7.99 0.80	15.52 2.30	9.46 2.15	9.60 1.82	8.97 2.36
HuatuoGPT-Vision[12]	34B	1.44 0.00	2.15 0.00	9.41 1.65	13.25 8.30	6.43 0.70	14.53 1.40	10.60 2.60	8.60 1.75	8.57 2.09
MedSeq-Grounder (Ours)	7B	83.29 93.20	83.72 94.10	55.03 60.19	62.10 67.20	74.11 82.60	85.25 98.80	78.77 82.75	60.43 65.59	72.5 : 79.7

Evaluation

		R	DG	VCG		V	PG	Avg	
Model	Size	ori	window	ori	window	ori	window	ori	window
Qwen2.5-VL	3B	0.31	0.29 0.00	11.81 1.00	8.87 0.25	28.23 2.93	26.17 1.95	11.67 1.13	10.23 0.64
Qwen2.5-VL	7B	1.15 0.17	0.59 0.00	9.73 1.00	5.98 1.00	26.37 3.41	29.21 4.63	10.90 1.34	10.42 1.63
Qwen2.5-VL	72B	3.31 2.32	3.08 1.33	13.59 4.50	10.11 2.50	28.08 6.34	27.54 6.10	13.41 4.10	12.17 3.04
MiniCPM-V-2_6 49	8B	1.25 0.00	1.33 0.00	14.18 2.25	12.64 3.25	29.46 13.90	29.97 12.93	13.09 4.67	12.84 4.67
MiniCPM-O-2_6 50	8B	1.55 0.00	1.64	12.26 1.50	13.34 1.50	25.27 11.46	23.60 10.00	11.46 3.75	11.35 3.33
Mantis-Idefics2 52	8B	0.08	0.09	10.24 0.75	9.01 0.25	11.03 0.49	9.73 0.73	6.13 0.35	5.41 0.28
LLaVA-OneVision 53	7B	1.32 0.00	1.02	13.45 1.00	15.28 1.25	21.96 6.34	20.98 3.17	10.74 2.12	10.85 1.27
InternVL2.5 59	8B	0.14 0.00	0.15 0.00	1.67 0.00	1.06 0.00	5.01 0.00	4.44 0.00	1.99 0.00	1.65 0.00
Migician 28	7B	10.06 5.31	16.97 8.29	16.87 6.75	12.65 5.25	21.73 6.10	25.94 11.22	15.37 5.94	18.35 8.28
HuatuoGPT-Vision 12	7B	1.24 0.17	1.41 0.00	6.85 0.00	7.95 0.50	12.89 0.73	14.80 1.95	6.21 0.28	7.15 0.71
MedSeq-Grounder (Ours)	7B	82.56 92.04	86.84 96.68	65.54 70.75	89.23 94.50	80.54 94.39	88.01 100.00	77.15 86.69	87.86 97.03

Model	Size	Avg(GPT-4)	Avg(DeepSeek)	Avg(Claude)	Avg(Ori
፟ Qwen2.5-VL∏	3B	10.51 3.86	10.60 3.85	10.31 9.02	10.94 4.20
Qwen2.5-VL	7B	11.25 15.29	10.87 4.13	11.19 4.41	12.31 4.90
Qwen2.5-VL	72B	13.45 6.37	13.35 6.29	13.39 6.41	13.35 6.12
MiniCPM-V-2_6[49]	8B	12.72 4.59	13.33 5.13	12.61 4.30	13.24 5.27
MiniCPM-O-2_6[50]	8B	10.68 3.85	10.34 3.51	10.27 3.32	10.12 3.23
mPLUG-Owl3 511	7В	10.92 2.86	10.71 2.69	11.04 2.92	13.22 3.19
Mantis-Idefics2 52	8B	10.33 4.35	10.02 4.07	10.06 3.91	9.90 3.91
LLaVA-OneVision 53	7B	13.55 5.51	11.59 3.44	12.46 3.47	12.39 3.47
InternVL2.5[59]	8B	7.46 2.78	7.83 2.72	7.13 2.64	7.04 2.56
Wigician 28	7В	20.31 11.39	20.53 11.91	20.43 11.46	20.29 11.39
HuatuoGPT-Vision 12		9.08 2.71	9.20 2.59	9.18 2.41	8.97 2.36
MedSeq-Grounder (Ours)	7B	72.68 79.98	71.67 78.76	72.86 80.18	72.55 79.71

Task	Question	ImageGT	qwen2.5_7b	internvl3_78b	huatuo_7b	Medgemma	gemini-2.5-pro	ours
Registered Difference Grounding	Locate the difference between the two images and provide its coordinates.	99	100:8,0022	100:0.0000	CU.0 0000	1014.000	10,43000	10U:1.0000
Non- registered Difference Grounding	Locate the real difference between the two images and give its coordinates in the second image.		100.0.000	100.0.0000	16U.0.000	100.0000	(B) 0.0000	10U.0.8767
Multi-view Grounding	These images share one object in common(red bounding box in the first image. Locate it in the third image.	1 2 3	100:0.3051	10U:0.1685	100.0.0410	200.8.000	100.0.000	10U:0.9846
Object Tracking	Both images contain the same object (red box in the first image). Locate it in the second image.	1 2 3	100.0.7939	100:0.6103	KOT-0 1235	100.000	100.9.7866	TOU:0.9607
Visual Concept Grounding	Find and locate where does the object in image-1 locate in the image-2		IQU:0.2550	100/0.1184	100 0000	100.02666	100-84715	10U:0.9786
Visual Patch Grounding	Given a source image and several regions, locate the first region within the source image.	source 1 2	100:0.1679	100.0000	louesons	100.0.021	100.0.062	100.0.0767
Cross-modal Grounding	Find in the second image the region corresponding to the red box in the first image with a similar function or meaning.		100:0,440	100:0.6	100.0.1	100.0.2	00077	10U.0.201
Referring Grounding	Please find the bounding box coordinates for the area described by: Skin .	1 2 3	0					27() () 4512 ()

- ☐ Analysis 1 (left): Effect of clinical windowing on model performance
- ☐ Analysis 2 (middle): the potential bias of question generations
- Analysis 3 (right): failure cases visualization

- 1. Motivation
- 2. MedSG-Bench
- 3. Evaluation
- 4. Conclusion

Conclusion

- ☐ This work introduces MedSG-Bench, the first benchmark specifically designed to evaluate the fine grained visual grounding capabilities of MLLMs in sequential medical images.
- ☐ Through systematic evaluations on eight clinically inspired grounding tasks, we find that all current MLLMs exhibit substantial limitations in medical image sequences grounding.
- □ To address these challenges, we construct a grounding instruction-tuning dataset, MedSG-188K, and develop MedSeq-Grounder.
- We hope our benchmark, dataset, and model will together advance the development of visual grounding in medical image sequences.

Thanks

NeurIPS 2025 Datasets and Benchmarks Track spotlight

Contact: yuejk@bupt.edu.cn

Home Page: https://github.com/Yuejingkun/MedSG-Bench