GUARD: Constructing Realistic Two-Player Matrix and Security Games for Benchmarking Game-Theoretic Algorithms

Noah Krever - Columbia

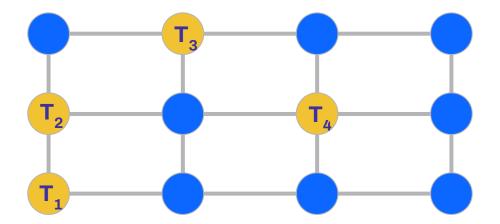
Jakub Černý - Columbia

Moïse Blanchard - Georgia Tech

Christian Kroer - Columbia

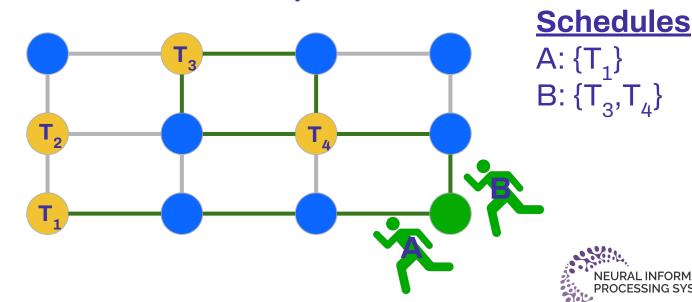
What we did:

We proved randomized security games are **degenerate**, and introduced a framework to build **realistic** ones.

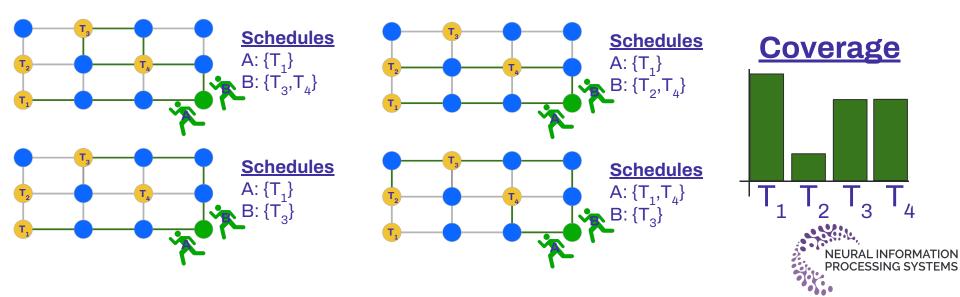

Security Games

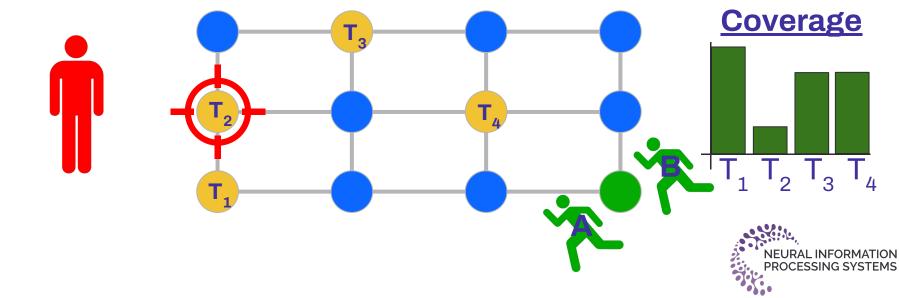
Security games model a defender establishing protection over a set of targets that an attacker tries to capture.

We consider two different types of action spaces for these games: **schedules** and **paths**.

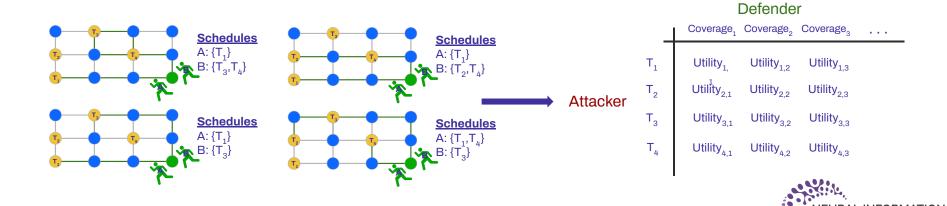


Consider a traversable environment with a set of targets T, each differing in value.

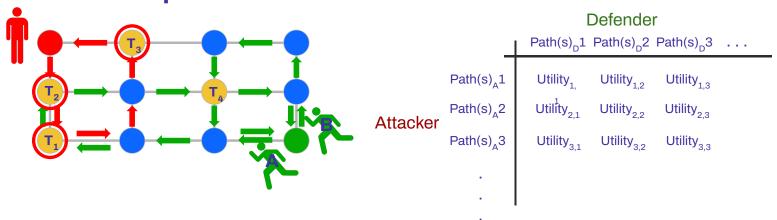



Defender resource(s) establish protection over **T**, assigning a **schedule** of simultaneously coverable targets to each resource. Subject to constraints.

Over time, the defender strategy becomes a distribution of possible coverages.



Attacker observes the protection strategy, and chooses a target to capture. They receive a utility based on if the target is covered or uncovered.


Schedule Form → Matrix Form

Schedule-form security games can be converted to matrix games by expanding schedule coverages into a defender action set, and setting possible attacked targets as the attacker's actions.

Path-Space Matrix Form Games

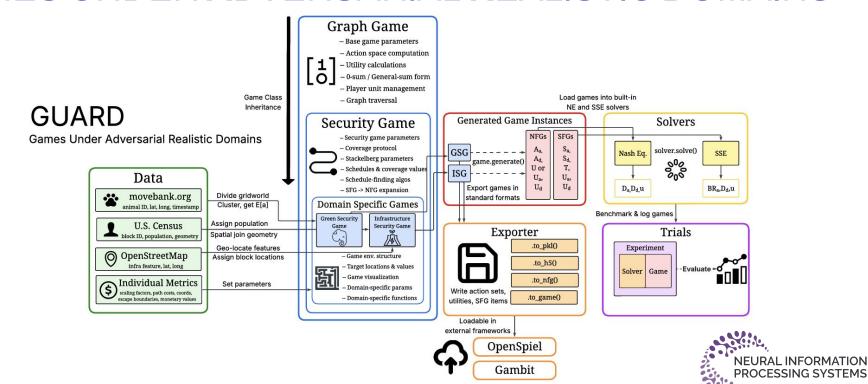
Security games can also be represented as **path-space matrix games**. Instead of schedules of covered targets and a chosen attack, actions are different **paths** that visit nodes.

Game is formulated as a matrix of payoffs which can be solved with game-theoretic algorithms.

Security Games

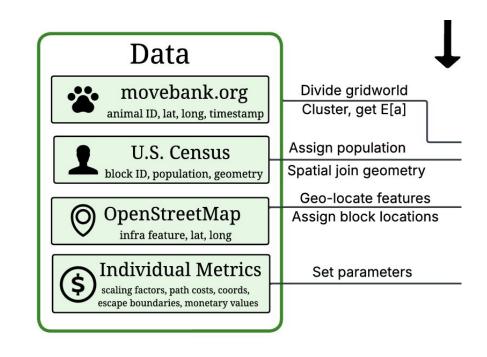
Model interactions like **anti-poaching**, and **urban counter-terrorism**.

In AGT, algorithms are often benchmarked on randomized instances. **Target locations** and **payoffs** are random.

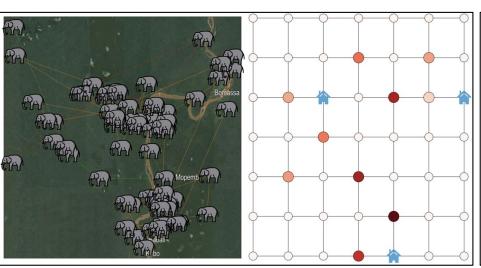

Limitations of Random Games

Thms 1 & 2: Randomized general sum games result in **degeneracy**: sparse strategies and trivial utility capture.

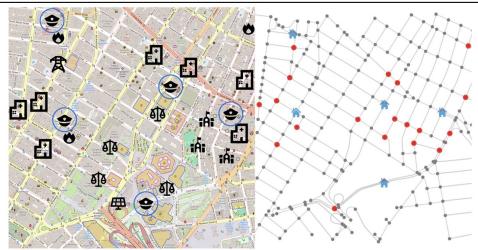
GUARD


GAMES UNDER ADVERSARIAL REALISTIC DOMAINS

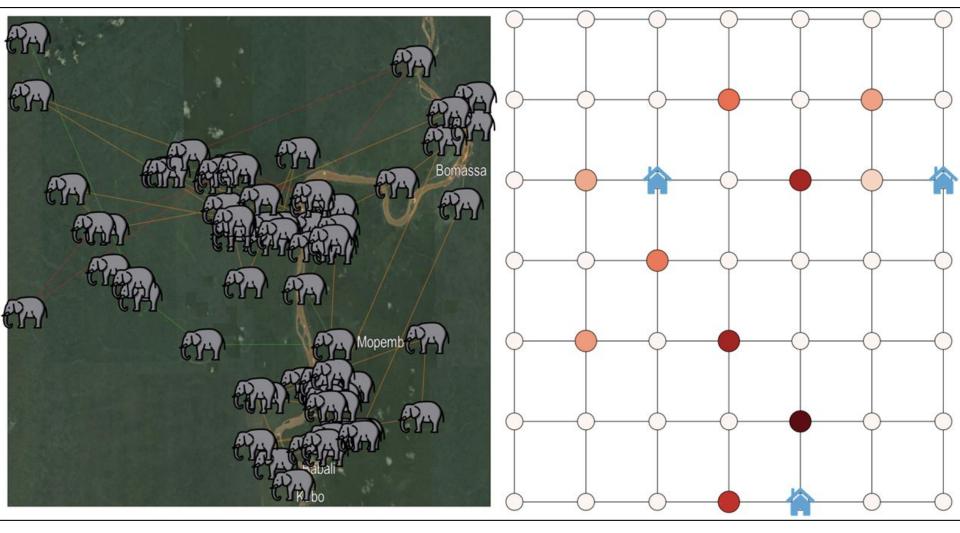
How does it work?

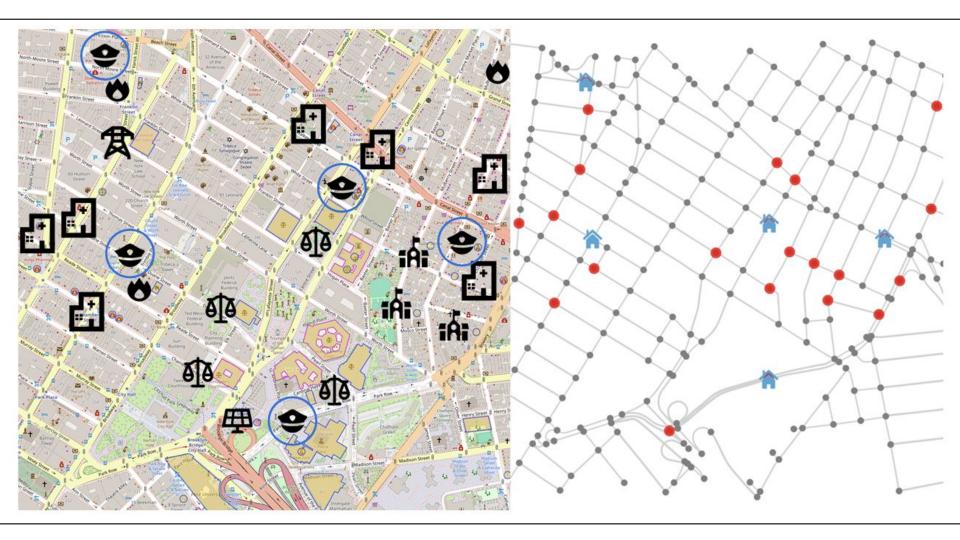

Use **real data** to build realistic game instances: GSGs and ISGs.

Target locations and values are informed by smart heuristics: animal density, population, etc.

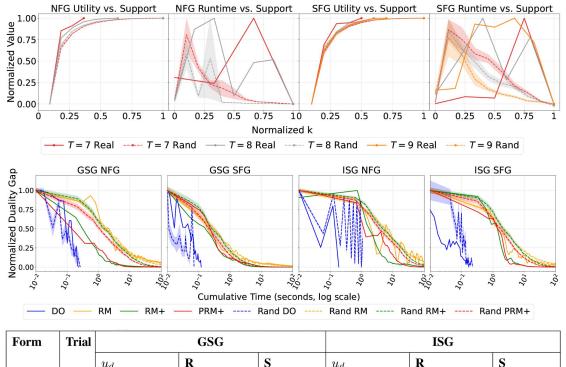


Examples

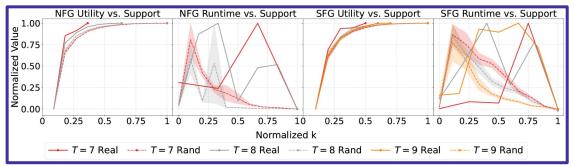


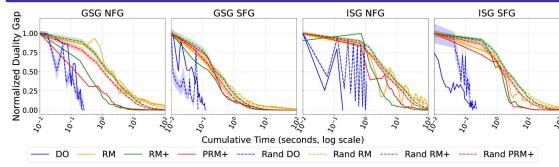

Left: Down-sampled elephant movements in Lobéké National Park. **Right**: Corresponding GSG model.

Left: Civil infrastructure in Manhattan's Chinatown. **Right**: Corresponding ISG model.



3 experiments across random and GUARD game instances, matrix games and security games, GSG and ISG settings.

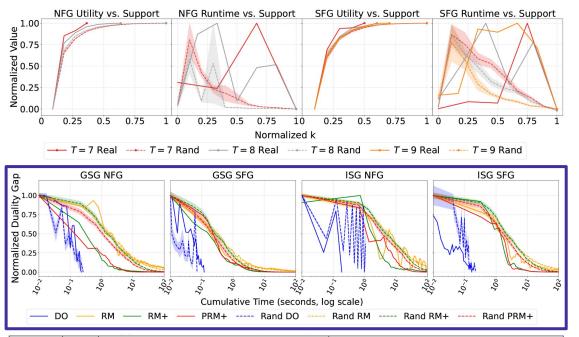

- Sparsity and Runtime
- Iterative Convergence
- General Sum SSE



Form	Trial	GSG			ISG		
		u_d	R	S	u_d	R	S
Simple	Real	-0.390	0.015s	6	-0.429	0.030s	11
Simple	RT	-0.298 ± 0.03	$0.01s \pm 0$	5.0 ± 0.52	-0.214 ± 0.05	$0.04s \pm 0$	7.5 ± 1.20
	Real	-0.207	0.46s	9	-0.408	838s	14
General	RM	-0.035 ± 0	$0.52s \pm 0.02$	2 ± 0.15	-0.026 ± 0	$541.5s \pm 1.98$	1.7 ± 0.15
General	RT	-0.253 ± 0	$0.35s \pm 0.01$	1.7 ± 0.26	-0.013 ± 0	$116.2s \pm 1.87$	1 ± 0
	RTS	-0.270 ± 0	$0.45s \pm 0.03$	1.4 ± 0.16	-0.032 ± 0	1.57 ± 0.04	1 ± 0

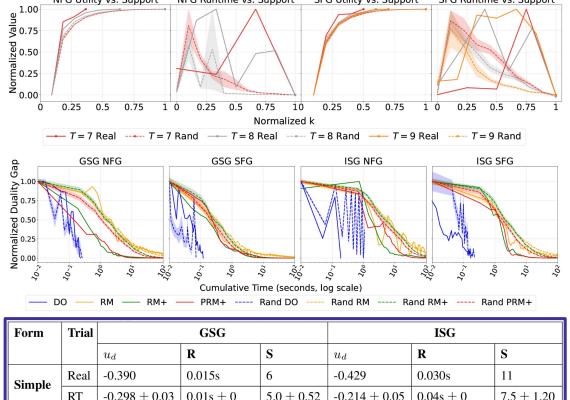
Sparsity and Runtime

- Randomized games produced artificially dense equilibrium strategies.
- GUARD games had simpler, but non-trivial strategies.
- Solving random games takes longer.



Form	Trial	GSG			ISG		
		u_d	R	S	u_d	R	S
Simple	Real	-0.390	0.015s	6	-0.429	0.030s	11
Simple	RT	-0.298 ± 0.03	$0.01s \pm 0$	5.0 ± 0.52	-0.214 ± 0.05	$0.04s \pm 0$	7.5 ± 1.20
	Real	-0.207	0.46s	9	-0.408	838s	14
General	RM	-0.035 ± 0	$0.52s \pm 0.02$	2 ± 0.15	-0.026 ± 0	$541.5s \pm 1.98$	1.7 ± 0.15
General	RT	-0.253 ± 0	$0.35s \pm 0.01$	1.7 ± 0.26	-0.013 ± 0	$116.2s \pm 1.87$	1 ± 0
	RTS	-0.270 ± 0	$0.45s \pm 0.03$	1.4 ± 0.16	-0.032 ± 0	1.57 ± 0.04	1 ± 0

Iterative Convergence


- Random games took longer to converge.
- Random games converged more erratically.
- GUARD games exhibited more reasonable convergence profiles.

Form	Trial	GSG			ISG		
		u_d	R	S	u_d	R	S
Simple	Real	-0.390	0.015s	6	-0.429	0.030s	11
Simple	RT	-0.298 ± 0.03	$0.01s \pm 0$	5.0 ± 0.52	-0.214 ± 0.05	$0.04s \pm 0$	7.5 ± 1.20
	Real	-0.207	0.46s	9	-0.408	838s	14
General	RM	-0.035 ± 0	$0.52s \pm 0.02$	2 ± 0.15	-0.026 ± 0	$541.5s \pm 1.98$	1.7 ± 0.15
General	RT	-0.253 ± 0	$0.35s \pm 0.01$	1.7 ± 0.26	-0.013 ± 0	$116.2s \pm 1.87$	1 ± 0
	RTS	-0.270 ± 0	$0.45s \pm 0.03$	1.4 ± 0.16	-0.032 ± 0	1.57 ± 0.04	1 ± 0

General Sum SSE

- Random games were completely degenerate in sparsity and utility capture.
- GUARD games had richer strategies and realistic utility capture.
- Directly illustrates our theorems' tenets.

NFG Runtime vs. Support

NFG Utility vs. Support

SFG Utility vs. Support

SFG Runtime vs. Support

	Form	Trial	GSG			ISG			
			u_d	R	S	u_d	R	S	
	Simple	Real	-0.390	0.015s	6	-0.429	0.030s	11	
		RT	-0.298 ± 0.03	$0.01s \pm 0$	5.0 ± 0.52	-0.214 ± 0.05	$0.04s \pm 0$	7.5 ± 1.20	
	General	Real	-0.207	0.46s	9	-0.408	838s	14	
		RM	-0.035 ± 0	$0.52s \pm 0.02$	2 ± 0.15	-0.026 ± 0	$541.5s \pm 1.98$	1.7 ± 0.15	
		RT	-0.253 ± 0	$0.35s \pm 0.01$	1.7 ± 0.26	-0.013 ± 0	$116.2s \pm 1.87$	1 ± 0	
		RTS	-0.270 ± 0	$0.45s \pm 0.03$	1.4 ± 0.16	-0.032 ± 0	1.57 ± 0.04	1 ± 0	

Reproducibility

GUARD can be used to generate new realistic games, but also comes with a predefined suite of instances.

It also integrates with existing game theory frameworks, and is completely open source, with continual improvements in progress.

github.com/CoffeeAndConvexity/GUARD

