

Fixing It in Post: A Comparative Study of LLM Post-Training Data Quality and Model Performance

NeurIPS 2025 - Track on Datasets and BenchmarksSpotlight Paper

Aladin Djuhera, Swanand Ravindra Kadhe, Syed Zawad, Farhan Ahmed, Heiko Ludwig, Holger Boche

1. Motivation: Post-Training Datasets are a Mess!

Proprietary Datasets

- mostly inaccessible
- no documentation or details on curation recipes

Open Datasets

- publicly accessible
- high-performance

... but

- no systematic performance comparisons (across models and datasets)
- lack of transparency (curation recipes)
- no sample-level tags (difficult reusability)

How to curate and/or choose good datasets in practice then?

2. Contribution of this Work

Side-by-Side Performance Evaluation for

- Tulu-3-SFT-Mix and SmolTalk SFT datasets
- fixed models and hyperparameters
- 14 diverse benchmarks

High-Quality Annotations with Magpie for

- conversational structure (single- vs. multi-turn)
- prompt and response quality
- task categories, language, safety

New Dataset: TuluTalk

- quality- and task-based curation recipe
- 14% 23% smaller + better performance
- 100% transparent and annotated

3. Dataset Analysis

Task Diversity

Tulu: STEM-oriented

SmolTalk: conversational

→ complementary task distributions!

Conversation Lengths

Tulu: single-turn

SmolTalk: multi-turn

Input (Prompt) Quality

- mostly good and excellent
- non-negligible "bad samples"

→ potential redundancy

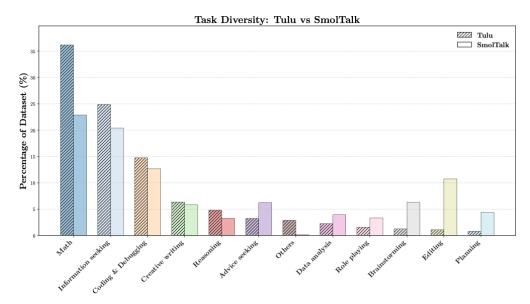


Fig.1: Task Distribution for Tulu and SmolTalk.

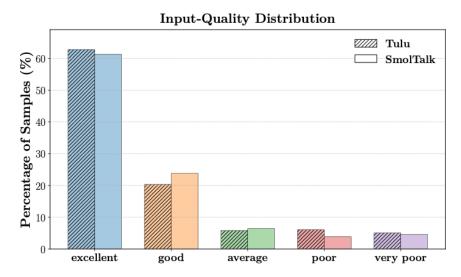
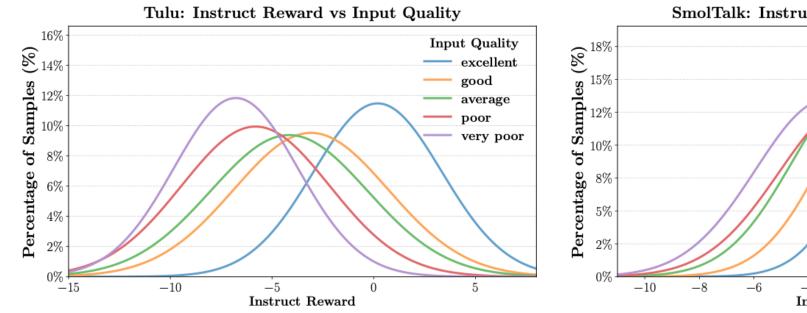


Fig.2: Input Quality Distribution for Tulu and SmolTalk.

3. Dataset Analysis

Input Quality vs. Instruct (Response) Reward

- single-turn: high input quality → high response quality
- multi-turn: no correlation



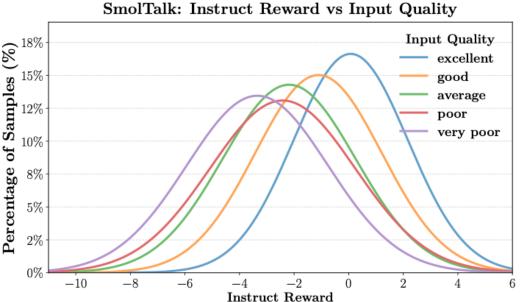


Fig.3: Input Quality vs. Instruct Reward for Tulu (left) and SmolTalk (right).

4. Quality- and Task-Aware Data Curation

Step 1: Quality-Based Filtering

- very good / excellent input quality
- high response reward

Step 2: Task-Aware Adaptation

- add more instruction following samples
- improve task diversity
- → increases cross-task performance

Result: Faster Training + Higher Performance

- · smaller datasets imply faster training
- removing redundancies improves accuracy

Quality- and Task-Aware Data Curation Recipe Input: Annotated dataset \mathcal{D} with Magpie tags for input quality (input_quality), single-turn/multi-turn response quality (st_reward/mt_reward), and task category (task_category); task diversity threshold τ . Output: Curated subset \mathcal{D}_c that is both high-quality and task-diverse.

Recipe:

1. Compute quantiles:

$$Q_1^e,\ Q_2^e \leftarrow 1$$
st/2nd quantiles of $\left\{S[\mathtt{st_reward}] \mid S[\mathtt{input_quality}] = \mathtt{excellent}, \\ S[\mathtt{turn}] = \mathtt{single_turn}\right\}, \\ Q_3^g \leftarrow 3$ rd quantile of $\left\{S[\mathtt{st_reward}] \mid S[\mathtt{input_quality}] = \mathtt{good}, \\ S[\mathtt{turn}] = \mathtt{single_turn}\right\}.$

For each S ∈ D, add S to D_c if

$$S[\text{input_quality}] = \text{excellent} \land$$

 $\Big((S[\text{turn}] = \text{multi_turn} \land S[\text{mt_reward}] = 5) \Big)$
 $\lor (S[\text{turn}] = \text{single_turn} \land S[\text{st_reward}] > Q_2^e) \Big).$

- Let C be the set of task categories whose coverage in D_c drops by more than τ relative to D.
- For each S ∈ D \ D_c, add S to D_c if

$$S[\texttt{task_category}] \in \mathcal{C} \land \\ \left(S[\texttt{input_quality}] = \texttt{excellent} \land \left((S[\texttt{turn}] = \texttt{multi_turn} \land S[\texttt{mt_reward}] = 4)\right. \\ \\ \left. \lor \left(S[\texttt{turn}] = \texttt{single_turn} \land Q_1^e < S[\texttt{st_reward}] < Q_2^e)\right) \right. \\$$

5. Numerical Results

23% smaller than SmolTalk and 14% smaller than Tulu!

	Llama-3.1-8B					SmolLM2-1.7B				
Benchmark	Base	Tulu	SmolTalk	Orca	TuluTalk	Base	Tulu	SmolTalk	Orca	TuluTalk
Knowledge										
MMLU (5-shot)	65.03	62.90	62.88	62.64	63.91	50.09	49.71	47.88	51.65	49.34
MMLU-Pro (5-shot)	32.71	28.73	31.76	31.89	30.17	21.26	19.61	20.37	23.40	20.67
TruthfulQA (0-shot)	45.22	46.41	55.74	52.08	53.16	36.61	44.04	44.74	42.84	43.65
GPQA (0-shot)	37.96	42.86	38.49	40.21	40.62	34.66	33.33	33.86	33.20	33.28
Reasoning										
ARC-C (25-shot)	54.69	54.61	59.04	53.07	57.42	51.54	44.54	48.46	46.25	47.27
BBH (3-shot)	46.48	39.06	45.50	45.74	43.50	34.04	36.66	37.81	38.05	38.33
MuSR (0-shot)	37.96	42.86	38.49	40.21	40.62	34.66	33.33	33.86	33.20	33.28
Commonsense										
HellaSwag (10-shot)	61.44	60.87	61.54	60.60	62.98	53.65	51.01	52.10	51.61	51.36
WinoGrande (5-shot)	76.87	76.64	77.19	71.19	79.22	68.19	65.90	65.27	64.96	66.06
Instruction Following										
IF-Eval (0-shot)	12.45	74.09	74.51	57.73	74.84	23.91	60.25	56.83	35.17	60.85
Math										
GSM8K (5-shot)	50.64	74.37	74.75	60.58	74.84	29.64	49.43	52.46	29.34	54.13
MATH (4-shot)	5.97	12.31	10.42	11.86	11.96	2.64	6.27	5.89	5.82	6.16
Code										
HumanEval (pass@1)	34.76	58.54	54.51	51.37	56.49	0.61	1.83	1.83	0.61	1.83
HumanEval+ (pass@1)	28.66	45.37	44.27	40.29	44.33	0.61	1.83	1.83	0.61	1.83
Leaderboards										
Open LLM Leaderboard 1	58.98	62.63	65.19	60.03	65.26	48.29	50.77	51.82	47.78	51.97
Open LLM Leaderboard 2	27.84	37.47	38.24	36.05	38.40	24.14	30.66	30.39	27.67	31.16
Overall	41.74	50.32	51.38	47.72	51.62	31.13	35.16	35.49	32.42	35.89

Tab.1: SFT Results for Llama and SmolLM models for Tulu, SmolTalk, Orca, and TuluTalk.

6. Conclusion

What we did

- used Magpie to annotate open SFT datasets
- developed a principled data curation strategy
- → TuluTalk: smaller + high-performance

What we showed

- quality > quantity
- data curation is task dependent

What we gave the Community

- annotated datasets
- more robust Magpie annotation pipeline

