

DataSIR: A Benchmark Dataset for Sensitive Information Recognition

Fan Mo, Bo Liu*, Yuan Fan, Kun Qin, Yizhou Zhao, Jinhe Zhou, Jia Sun, Jinfei Liu, Kui Ren **Zhejiang University** DBAPPSecurity Co., Ltd

Motivation

Increasing Cost of A Data Leakage

The global average cost of a data leakage in 2024 rose to \$4.88 million, an increase of nearly 10% from \$4.45 million in 2023.

Original Data to Format Transformations

Data leakage prevention (DLP) technologies lag behind evolving evasion techniques. For example, various format transformations can be performed on the data, such as Unicode encoding, and then after leakage, reverse Unicode encoding can restore the original data.

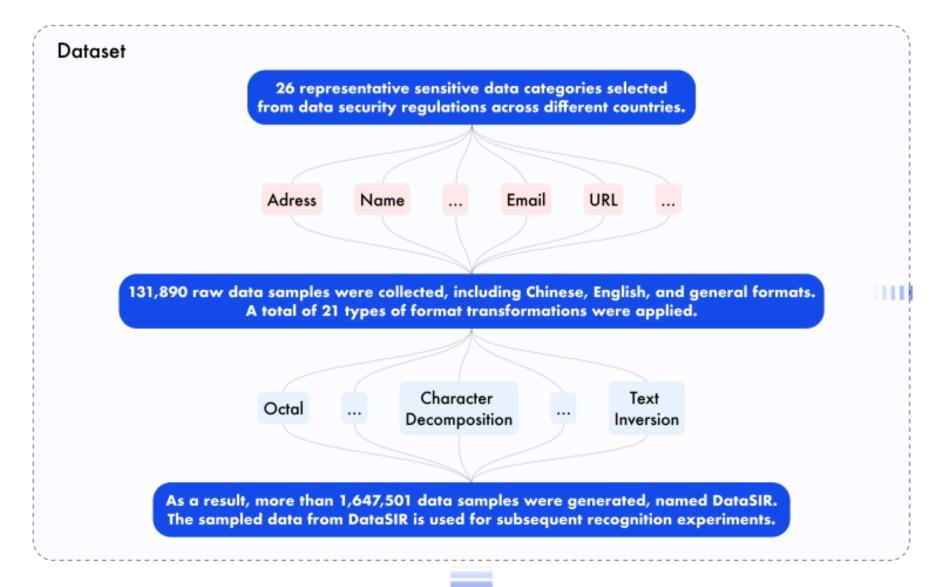
Lack of Datasets for Developing SIR Models

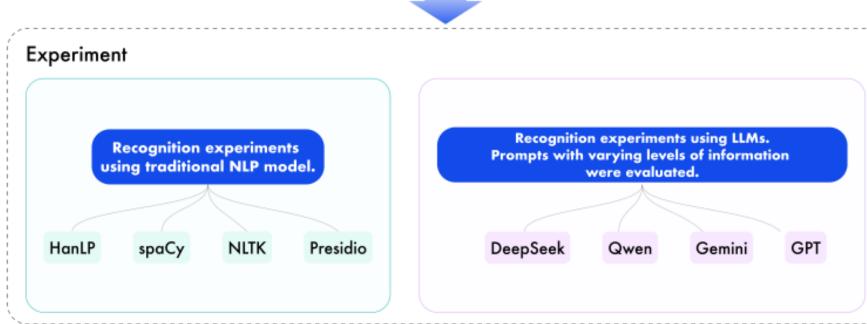
Current datasets lack comprehensive coverage of these adversarial transformations, limiting the evaluation of robust SIR systems.

What do we do?

We introduce DataSIR, a benchmark dataset specifically designed to evaluate SIR models on sensitive data subjected to diverse format transformations. We curate 26 sensitive data categories based on multiple international regulations, and collect 131,890 original samples correspondingly.

Through empirical analysis of real-world evasion tactics, we implement 21 format transformation methods, which are applied to the original samples, expanding the dataset to 1,647,501 samples to simulate adversarial scenarios.





Multilingual and Rich-Regulations Coverage

To ensure consistency and broad applicability, 26 representative sensitive data categories were selected based on major international regulations (e.g., HIPAA, SOX, GDPR, CCPA, PIPL). And examples were provided in both Chinese and English.

Our Contributions

Extensive Format Transformations

For each sensitive category, 21 transformation types (e.g., binary, octal, Morse code, insertion of digits or English words) are applied, resulting in 1,647,501 samples, which significantly enrich the diversity of sensitive data.

High-Quality Benchmark Dataset

The dataset's quality was validated using various NLP and LLM methods and models, demonstrating strong differentiation capabilities across different categories and formats. It can serve as a robust benchmark for evaluating and developing future sensitive information recognition models.

The DataSIR Dataset - 26 Types of Data

Table 1: Overviews of DataSIR

Category	Covered Regulations	Language Involved	Original Count	Transformed Count	Total Count
Address	GDPR, PIPL, CCPA	Chinese/English	6000	72000	78000
Marital Status	GDPR, PIPL, CCPA	Chinese/English	8	104	112
Medical History	HIPAA, PIPL, CCPA	Chinese/English	6000	74838	80838
Name	GDPR, PIPL, CCPA	Chinese/English	6000	77607	83607
Nationality	GDPR, PIPL, CCPA	Chinese/English	482	6204	6686
Occupation	GDPR, PIPL, CCPA	Chinese/English	600	7542	8142
Organization	HIPAA, SOX, GDPR	Chinese/English	6000	73345	79345
Party	GDPR, PIPL, CCPA	Chinese/English	600	7402	8002
Religion	GDPR, PIPL, CCPA	Chinese/English	200	2569	2769
Date/Time	HIPAA, SOX	General	6000	48000	54000
Driver's License	GDPR, PIPL, CCPA	General	6000	66000	72000
Email	GDPR, PIPL, CCPA	General	6000	66000	72000
Personal ID	GDPR, PIPL, CCPA	General	6000	66000	72000
IMEI	GDPR, PIPL, CCPA	General	6000	84000	90000
IMSI	GDPR, PIPL, CCPA	General	6000	84000	90000
IPv4	GDPR, PIPL, CCPA	General	6000	66000	72000
IPv6	GDPR, PIPL, CCPA	General	6000	72000	78000
JDBC Connection String	GDPR, PIPL, CCPA	General	6000	66000	72000
Landline Number	HIPAA, CCPA	General	8000	96000	104000
MAC	GDPR, PIPL, CCPA	General	6000	72000	78000
MEID	GDPR, PIPL, CCPA	General	6000	66000	72000
Mobile Number	GDPR, PIPL, CCPA	General	8000	96000	104000
Passport	GDPR, PIPL, CCPA	General	6000	66000	72000
Postcode	GDPR, PIPL, CCPA	General	6000	66000	72000
Transaction Amount	GDPR, PIPL, CCPA, SOX	General	6000	48000	54000
URL	GDPR, PIPL, CCPA	General	6000	66000	72000

The DataSIR Dataset - 21 Format Transformations

A. Binary

B. Octal

- C. Hexadecimal
- D. ASCII encoding
- E. Unicode encoding
- F. UTF-8 encoding

G. Base64 encoding

- H. URL encoding
- I. HTML entity encoding

J. Morse encoding

- K. Braille encoding
- L. Nested encoding
- M. Acrostic poetry

N. Character decomposition

O. Text inversion

- P. Martian text
- Q. Simplified to traditional Chinese
- R. Numerical capitalization
- S. Inserting special characters
- T. Inserting Chinese characters
- U. Inserting English letters/numbers

Base-8 system using digits 0-7. (e.g., 616655990822147 → 6 1 6 6 5 5 11 11 0 10 2 2 1 4 7).

Converting byte streams obtained through UTF-8 encoding into 64 printablecharacters (A-Z, a-z, 0-9, +, /). (e.g., China → Q2hpbmE=).

Using combinations of short (·) and long (—) signals to represent let-ters/numbers, separated by spaces between words. (e.g., China → -.-. -. .-).

Decomposing Chinese characters into components or strokes. (e.g., 功 = 工 + 力).

Reversing character sequence. (e.g., hello → olleh).

The DataSIR Dataset - Cross-Reference Table

Category

Table 2: Sensitive Category - Format Transformation Cross-Reference Table

A B C D E F G H I J K L M N O P Q R S T U

	Marital Status	\times	×	×	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark											
	Medical History	×	×	×	\checkmark	✓	✓	✓	\checkmark	✓	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark						
	Name	×	×	×	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark											
	Nationality	×	×	×	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark								
	Occupation	×	×	×	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark											
	Organization	×	×	×	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark											
	Party	×	×	×	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark											
	Religion	×	×	×	\checkmark	√	√	√	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark							
Not all sensitive categories can	Date/Time	×	×	×	×	√	√	√	×	\checkmark	×	×	\checkmark	×	×	×	\checkmark	×	√	\checkmark	×	×
3	Driver's License	×	×	×	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	\checkmark	×	√	\checkmark	×	×
undergo all 21 format	Email	×	×	×	√	\	\	√	√	√	√	√	√	×	×	×	√	×	×	√	×	×
transformations. Some	Personal ID	×	×	×	V	V	V	\	×	\	\	V	V	×	×	×	\	X	V	\	X	X
	IMEI	V	V	V	V	V	V	V	X	V	V	V	V	X	×	×	V	X	V	V	X	X
transformations are applicable to	IMSI IPv4	V	√	V	V	V	\	V	X	V	V	V	V	X	X	×	V	X	V	V	X	X
• •	IPv4 IPv6	×	×	×	· /	· /	V	V		V	· /	· /	V	Š	Š	Š	V	×	V	V	×	×
Chinese, others to English, some to	JDBC Connection string	Ŷ	Q	Ŷ				./	./	./	./	./	./	Ŷ	Q	Q	·/	Ŷ	v	./	Ŷ	Ŷ.
numbers, and others to symbols.	Landline Number	×	Ŷ	Ŷ	1	1	1	1	1	1	1	1	1	Ŷ	Ŷ	$\hat{\mathcal{L}}$	1	×	Ĵ	1	×	×
ridifiboro, difa ottioro to oyiiibolo.	MAC	×	×	×	1	1	1	1	1	1	1	1	1	×	×	×	1	×	· /	1	×	×
	MEID	×	×	×	<i>\</i>	<i>\</i>	1	<i>\</i>	×	\	<i>\</i>	<i>\</i>	1	×	×	×	\	×	<i>\</i>	<i>\</i>	×	×
Each estagory is applicable to	Mobile Number	×	×	×	\	\	\	\	✓	✓	\	✓	✓	×	×	×	✓	×	✓	\	×	×
Each category is applicable to	Passport	×	×	×	✓	✓	✓	✓	×	✓	✓	✓	✓	×	×	×	✓	×	✓	✓	×	×
around 10 transformations, with a	Postcode	×	×	×	✓	✓	✓	✓	×	✓	✓	✓	✓	×	×	×	✓	×	✓	✓	×	×
·	Transaction Amount	×	×	×	×	✓	\checkmark	✓	×	\checkmark	×	×	✓	×	×	×	\checkmark	×	\checkmark	\checkmark	×	×
minimum of 8 and a maximum of 14.	URL	×	×	×	✓	✓	\	✓	✓	✓	✓	\	✓	×	×	×	✓	×	×	✓	×	×

Experiment Results- NLP vs LLMs

Table 3: Comparison of LRAcc for NLP Model Based Tools

> The commonly used NLP models and tools in traditional data security solutions perform poorly in defending against advanced data leaks.

Tool Labels Count		List of Recognizable Labels	Original	Transformed	Overall	
HanLP	8	Landline, Mobile Number, Date/Time, Postal Code, Amount, Address, Name, Organization	13.71%	4.15%	4.91%	
spaCy	8	Date/Time, Amount, Nationality, Address, Name, Party Affiliation, Organization, Religious	13.29%	2.40%	2.98%	
NLTK	3	Address, Organization, Name	2.59%	0.39%	0.56%	
Presidio	12	IPv4, URL, Landline, Mobile Number, Date/Time, Email, Nationality, Address, Name, Party	23.71%	3.31%	4.93%	

NLP

< 5%

LRACC LLMs

> 60%

- > If traditional data security solutions can integrate LLMs, the effectiveness of defending against data leaks would improve significantly and has the potential for further enhancement.
- > As the information content in the prompts increases, the LRAcc also increases.

Table 4: Comparison of LRAcc for LLMs with Different Prompts

Prompts	DeepSeek LRAcc	Qwen LRAcc	Gemini LRAcc	GPT LRAcc
no label info, no format info	4.18%	5.68%	4.46%	6.65%
with label info, no format info	47.90%	47.55%	53.91%	55.79%
with label info, with format info	54.37%	55.97%	65.04%	64.30%

Experiment Results - Comparison of Results for Gemini with Different Format Transformation

Table 5: Comparison of Results for Gemini with Different Format Transformation

Туре	LRAcc (%)	DRAcc (%)
Binary	18.00	98.00
Octal	18.00	98.00
Hexadecimal	16.00	0.00
ASCII encoding	69.57	95.74
Unicode encoding	71.39	97.17
UTF-8 encoding	72.43	95.53
Base64 encoding	59.02	66.47
URL encoding	86.02	97.49
HTML entity encoding	70.64	94.78
Morse encoding	63.37	69.77
Braille encoding	52.71	46.51
Nested encoding	57.68	60.21
Acrostic poetry	71.85	76.30
Character decomposition	66.35	61.54
Text inversion	68.57	57.96
Martian text	61.25	58.27
Simplified to traditional Chinese	74.04	50.96
Numerical capitalization	47.86	78.35
Inserting special characters	66.02	68.71
Inserting Chinese characters	80.14	85.82
Inserting English letters/numbers	65.38	58.65
All Above Format Transformed Data	64.39	75.26
Original data	72.58	95.08

- 1. The LRAcc and DRAcc of all format-transformed data are lower than those of the original data, which indicates that it is more difficult to recognize and restore data after format transformed.
- 2. Gemini's recognition of URL-encoded data is the best, as URL encoding only involves transforming Chinese characters and some symbols, making it relatively easy for LLMs to restore the original data and significantly enhancing the recognition of sensitive categories.

Experiment Results - Comparison of Results for Gemini with Different Sensitive Categories

Table 6: Comparison of Results for Gemini with Different Sensitive Categories

Category	Precision (%)	Recall (%)	F1-score (%)	DRAcc (%)
Address	62.65	99.08	76.76	61.85
Marital Status	90.80	95.62	93.15	89.69
Medical History	99.57	69.85	82.11	62.99
Name	65.11	92.51	76.43	76.08
Nationality	95.15	56.48	70.89	80.69
Occupation	97.65	62.09	75.91	71.64
Organization	40.89	78.05	53.67	65.85
Party	87.93	30.63	45.43	76.88
Religion	99.07	30.72	46.90	65.80
Date/Time	96.90	93.59	95.22	84.62
Driver's License	16.67	0.67	1.28	75.00
Email	91.46	96.66	93.98	63.21
Personal ID	25.79	65.67	37.03	74.67
IMEI	26.03	21.87	23.77	83.20
IMSI	83.33	6.67	12.35	86.93
IPv4	95.62	94.67	95.14	87.00
IPv6	98.95	87.38	92.81	69.54
JDBC Connection string	97.39	99.67	98.52	69.67
Landline Number	62.69	74.46	68.07	76.92
MAC	62.77	89.23	73.70	76.31
MEID	68.29	18.73	29.40	65.22
Mobile Number	27.47	80.31	40.94	78.77
Passport	0.00	0.00	0.00	80.67
Postcode	73.50	77.67	75.53	93.00
Transaction Amount	71.72	31.56	43.83	64.89
URL	95.81	99.00	97.38	73.33

- 1. The model achieves F1-score above 90% in categories such as URL, JDBC Connection String, IPv4 and IPv6 Address, Email, and Date/Time. This indicates that even after format transformations, these categories of sensitive information with stable or distinctive formatting patterns can still be effectively recognized.
- 2. In contrast, categories such as Personal ID, Passport, Driver's License, and Transaction Amount generally yield F1-score below 40%. This performance degradation is mainly due to the fact that recognizing these categories of sensitive data depends more on contextual semantics and discourse cues.

THANKYOU

kaggle

Github