Al Progress Should Be Measured by Capability-Per-Resource, Not Scale Alone

A Framework for Gradient-Guided Resource Allocation in LLMs

David McCoy, Yulun Wu, Zachary Butzin-Dozier

UC Berkeley, Division of Biostatistics

NeurIPS 2025

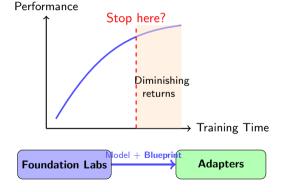
The Problem: Scaling Fundamentalism

Current AI Development:

- GPT-3: 552 tons CO₂
- LLaMA 65B: Final 15% of training
 → j0.01 improvement
- Growing resource inequality

Our Solution:

- Measure by $\Delta \Psi / \Delta \Gamma$
- Stop training when returns diminish
- Use gradient blueprints for adaptation



Why This Works: Heavy-Tailed Gradients

Key Observation:

Gradients follow power-law:

$$\|\nabla_{\theta(r)}\| \approx C \cdot r^{-\alpha}, \quad \alpha \in (1,2)$$

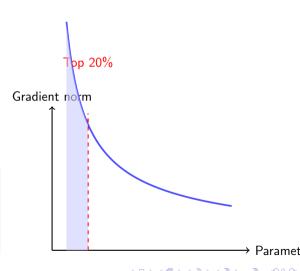
Implication:

- ullet Top 10% params o 50% gradient mass
- Small fraction matters most

Theorem (Partial-Update Advantage)

Under power-law gradients, $\exists k^* \in (0,1)$ where:

$$rac{\Delta_{k^*}(\Psi)}{\mathcal{C}(\Delta_{k^*})} > rac{\Delta_{\mathit{full}}(\Psi)}{\mathcal{C}(\Delta_{\mathit{full}})}$$



Gradient Blueprints: Bridging Labs & Adapters

What are Blueprints?

Foundation labs publish metadata:

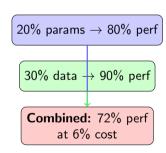
- Submodule gradient norms
- Recommended update fractions k^*
- Domain-specific weightings

Layer	Grad	k*
attn.0	0.052	0.15
ffn.0	0.033	0.25
attn.1	0.045	0.13

Adapters: 60-80% memory reduction

Multiplicative Gains:

Parameter × Data Selection



Result: 12× efficiency gain

Real-World Impact & Key Results

For Foundation Labs:

- Save 10-20% compute
- Reduce carbon footprint
- Publish blueprints with models

For Smaller Labs:

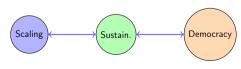
- Fine-tune on consumer GPUs
- 8× memory reduction
- Democratized access

Example (Biomedical):

- Tune 13% of mid-layers
- Match full-model performance
- Enable research at scale

Theoretical Contributions:

- **Operation** Prop 3.1: Partial updates optimal
- Thm 3.2: Gradient norms approximate influence
- Oata selection: Extends to training data
- Oross-influence: Multiplicative gains



Capability-Per-Resource

NeurIPS 2025

Key Takeaways

- **Olympia Scaling fundamentalism:** Resource efficiency must be first-class
- **@ Gradient blueprints**: New standard for model releases enabling efficient adaptation
- **Theoretical foundations**: Heavy-tailed gradients justify selective updates as optimal
- Practical impact:
 - Foundation labs: 10-20% compute savings, reduced emissions
 - Smaller labs: consumer GPU fine-tuning, democratized access
 - Combined approach: 10×+ efficiency gains

Thank You! See you at the poster!

david_mccoy@berkeley.edu

