Data-Driven Performance Guarantees for Classical and Learned Optimizers

Neurips 2025: Journal-to-Conference track

Data-Driven Performance Guarantees for Classical and Learned Optimizers

R. Sambharya, B. Stellato *Journal of Machine Learning Research, 2025*

Rajiv Sambharya

Bartolomeo Stellato

Data-Driven Performance Guarantees for Classical and Learned Optimizers

Neurips 2025: Journal-to-Conference track

Data-Driven Performance Guarantees for Classical and Learned Optimizers

R. Sambharya, B. Stellato

Journal of Machine Learning Research, 2025

Rajiv Sambharya

Bartolomeo Stellato

Real-world optimization is parametric

 $\begin{array}{c} \text{parameter} \\ x \longrightarrow \end{array}$

minimize f(z,x)subject to $z \in \Omega(x)$

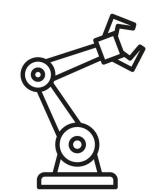
convex problem in z

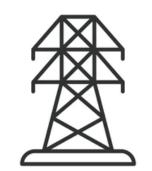
optimal solution

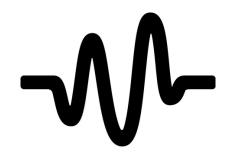
$$---z^*(x)$$

applications

power signal robotics grids processing







operations data science research

research

first-order methods are popular...

fixed-point iterations $z^{k+1}(x) = T(z^k(x), x)$

...but classical worst-case convergence bounds can be very loose!

example: projected gradient descent

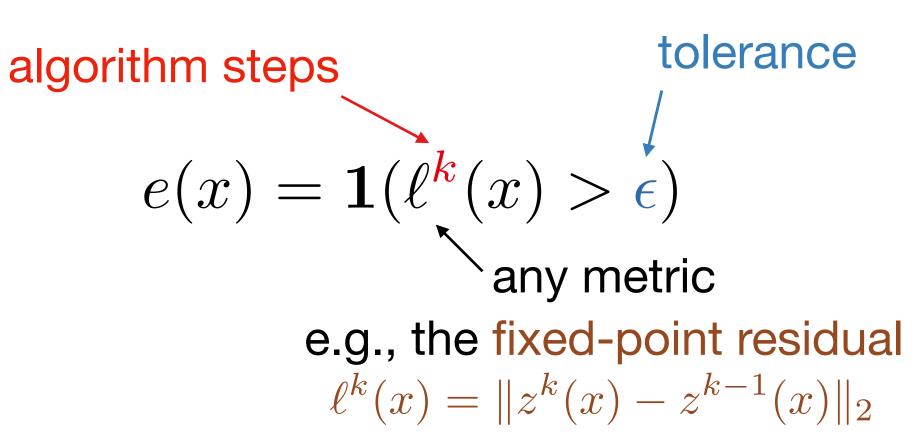
$$z^{k+1}(x) = \Pi_{\Omega(x)} \underbrace{(z^k - \theta^k \nabla f(z^k(x), x))}_{\text{projection}}$$
 projection gradient step

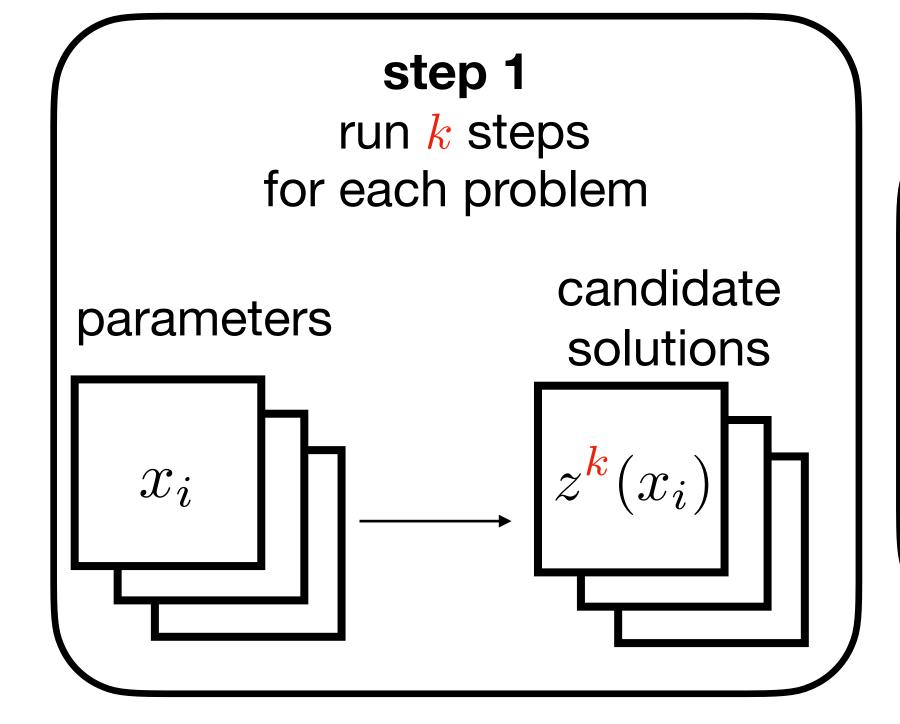
Building probabilistic guarantees for classical optimizers

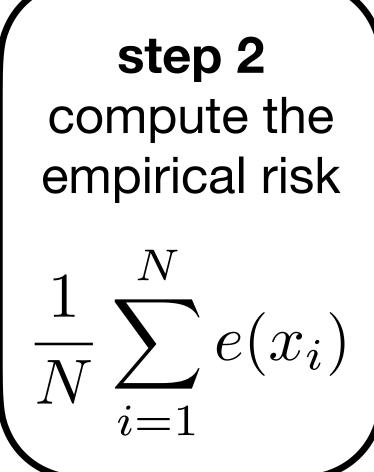
can we exploit the parametric structure to get tighter guarantees?

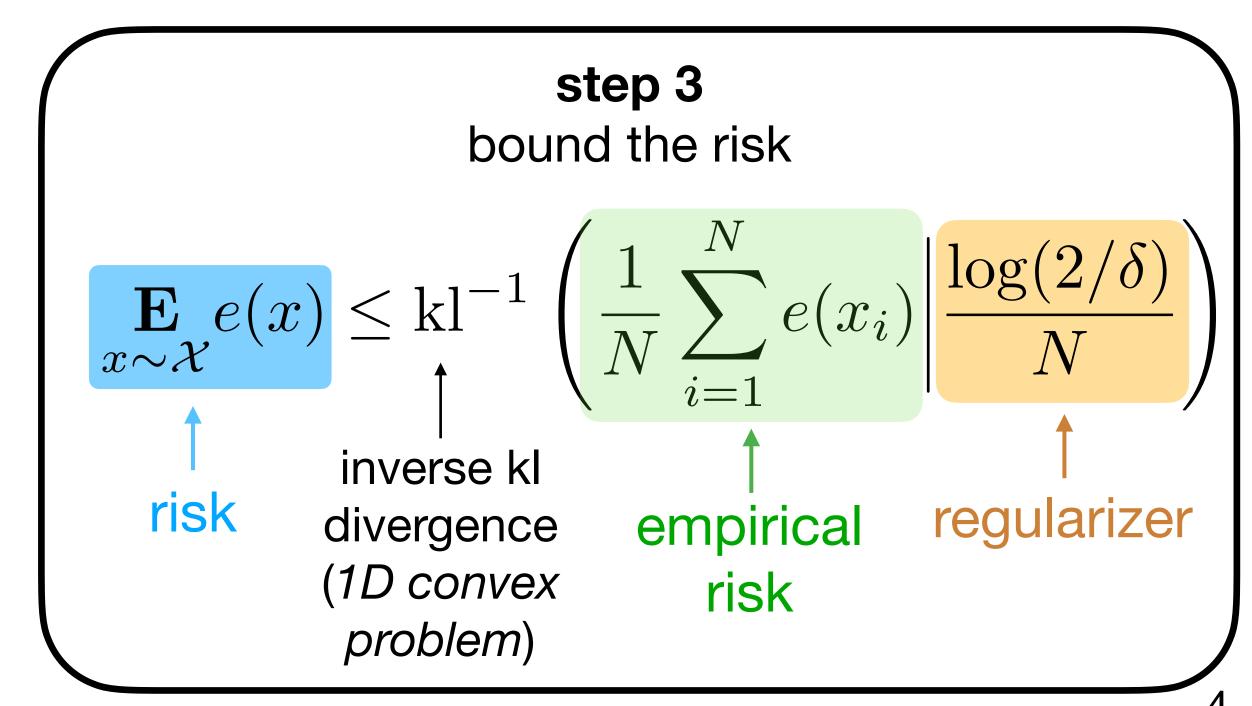
$$\{x_i\}_{i=1}^N$$

assume access to a dataset of parameters

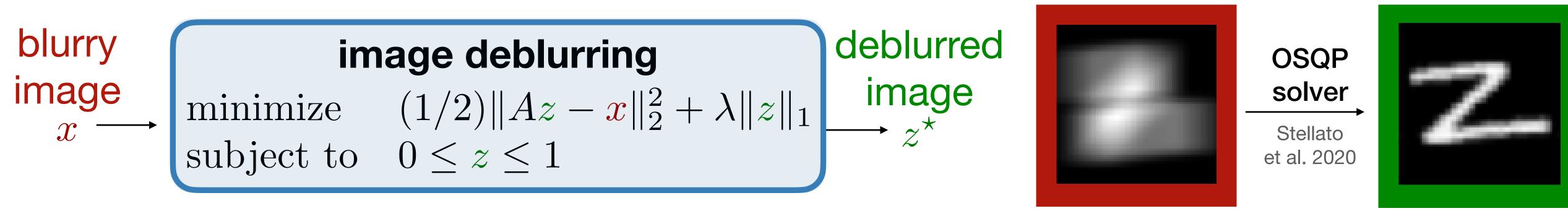




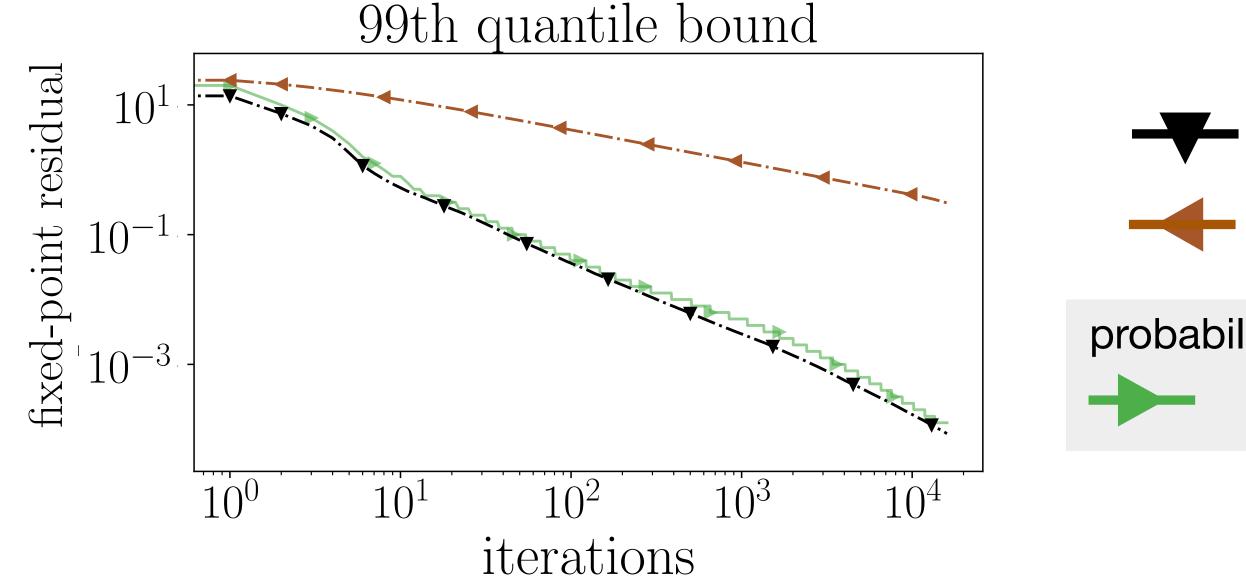


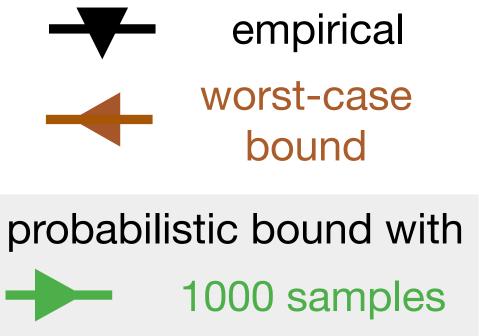


Tight guarantees for image deblurring



quantile bounds





our probabilistic bounds are much tighter than classical worst-case guarantees!

Data-Driven Performance Guarantees for Classical and Learned Optimizers

Neurips 2025: Journal-to-Conference track

Data-Driven Performance Guarantees for Classical and Learned Optimizers

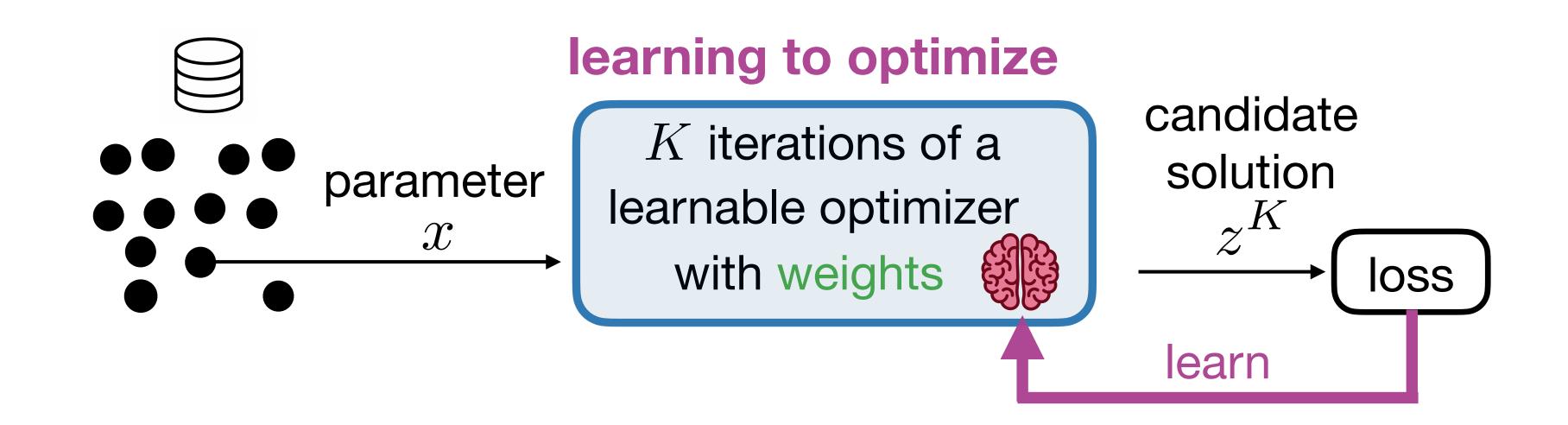
R. Sambharya, B. Stellato

Journal of Machine Learning Research, 2025

Rajiv Sambharya

Bartolomeo Stellato

The learning to optimize paradigm



learned optimizers have seen lots of empirical success...

...however, they lack guarantees on unseen data

Optimizing PAC-Bayes guarantees for learned optimizers

learning task

$$\min_{\Theta} \mathbf{E} \mathbf{E}_{x \sim \mathcal{X}} e_{\theta}(x)$$

distribution of algorithm weights (e.g., step sizes, warm starts)

- 1. pick a prior Θ_0 before observing data
- 2. observe data $\{x_i\}_{i=1}^N$
- 3. learn the posterior $\Theta:\theta\sim\Theta$
- 4. bound the performance

McAllester 1999

Maurer 2004

$$\mathbf{P}\left(\mathbf{E}_{\theta \sim \Theta} \mathbf{E}_{x \sim \mathcal{X}} e_{\theta}(x) \leq \hat{t}_{N}\right) \geq 1 - \delta$$

data-driven bound

$$\hat{\mathbf{t}}_{N} = \mathrm{kl}^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{E}_{\theta \sim \Theta} e_{\theta}(x_{i}) \right)$$

 $\left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{E}_{\theta \sim \Theta} e_{\theta}(x_i) \middle| \frac{\mathrm{KL}(\Theta||\Theta_0) + \log(2\sqrt{N}/\delta)}{N}\right)$

empirical risk

regularizer

minimize the data-driven bound itself!

Dziugaite et al. 2017 Majumdar et al. 2021

Learned ISTA results for sparse coding

 $\begin{array}{c} \text{noisy} \\ \text{measurement} \\ \boldsymbol{x} \end{array}$

signal reconstruction

minimize
$$(1/2)||Az - x||_2^2 + \lambda ||z||_1$$

ground truth sparse signal z^{\star}

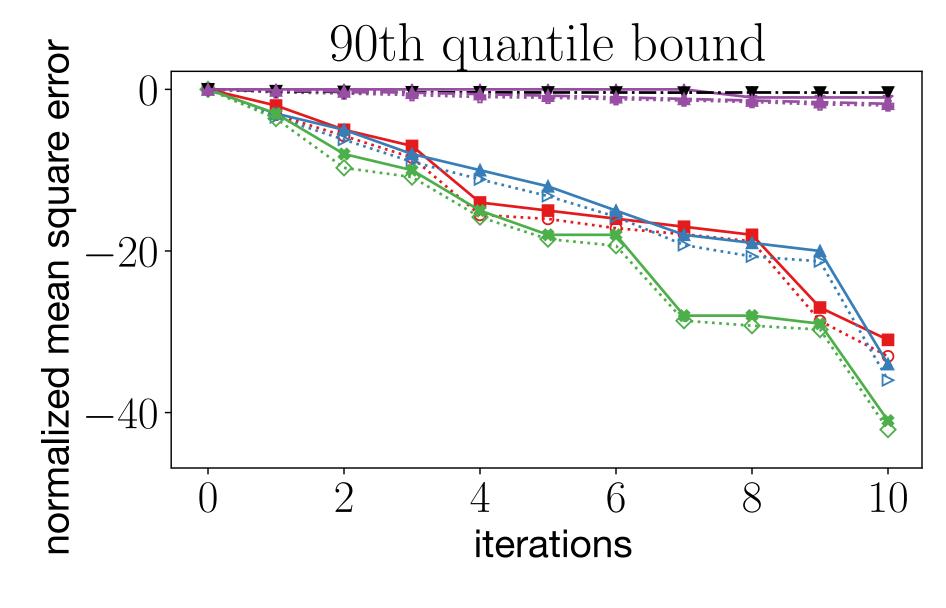
ISTA (iterative shrinkage thresholding algorithm)

$$z^{j+1} = \text{soft threshold}_{\frac{\lambda}{L}} \left(z^j - \frac{1}{L} A^T (Az^j - b) \right)$$

Learned ISTA

$$z^{j+1} = \operatorname{soft\ threshold}_{\psi^j} \left(W_1^j z^j + W_2^j b \right)$$

	Not learned	Learned			
	ISTA	LISTA	ALISTA	TiLISTA	GLISTA
Bound Empirical					
		Gregor et al. 2010	Liu et al. 2019	Liu et al. 2019	Wu et al. 2020



our bounds are close to empirical performance

learned optimizers provably perform well in just 10 steps