Department o
WRWERSIDE Mathematics

ALA: an Agentic Approach for

Translating Mathematics into Code for Proof-Assistant
Patricio Gallardo, Maziar Raissi, **Ke Zhang**, **Sudhir Murthy** O :

Department of Mathematics, University of California, Riverside

Introduction Case Stud

Formalization is the activity of translating Foreachd € R, H, = HyR_,,, where

mathematics written in pen-paper into verifiable

code. Our goal is to leverage Al to auto-formalize 1 O CoOs® —sing

mathematical statements into faithful Lean4 code. [0 _1l Ry = [sin ¢ cosg |’
import Mathlib

open Real

Challenges:
« LLM’s hallucinate, applying false theorems and
citing non-existent data types

* Limited datasets for non-Olympiad, upper-division def HO : Matrix (Fin 2) (Fin 2) R :=

and graduate level mathematics. funij=>ifi=(0:Fin 2) then
» Correct Lean4 code # faithful translation. Need ifj = (0:Fin 2) then 1 else 0
semantic validation. elseifj=(0: Fin 2) then O else -1
* Traditional mathematics is based on Set Theory
whereas Lean4 is based on Type Theory. noncomputable def R (b : R) : Matrix

(Fin2) (Fin2) R:=funij=>

Our Approach if i = (0:Fin 2) then

if j = (0:Fin 2) then cos ¢ else -sin ¢ else if j = (0:Fin 2)

LLM-as-Judge .

> then sin ¢

CoT prompt

else cos ¢
noncomputable def H (B:IR): Matrix (Fin 2)
AGENT (Fin2) R:=HO*R (-2 * 6)
.| ORCHESTRATOR e T~

theorem H_theta_eq HO _mul R neg two theta
(6:R):HO=HO*R (-2 *©) := by sorry

@ Inheritance Struitgf/

Lean4 Translator

A

REPL pass
OR max
steps
reached?

REPL Compile Checker

Kevy Contributions

File Write / Update i]
* We introduce an agent with access to tools such

Y VIV VIV VY
1

TOOL SELECTION Variable / Theorem Lookup as specialist LLM (Herald), to iteratively refine
& EXECUTE 1 - Retrieval-Augmented Lean4 code.
lRun in Sandbogor Examples] * We introduce a dataset of 400+ mathematical
Docker container VI — statements in analysis, algebra, and topology.
[TOOL RUN W * Achieves a 3x improvement in equivalent
RESULT Base tool translations vs. fine-tuned translator baseline
S~ - (22.5% — ~70% best configuration).
AGENTIC TOOL-USE LOOP Limitations & Future Work

We introduce an agentic translation pipeline where an LLM iteratively refines Lean4 ° NO agent intrOSpeCtiOn
code using tool feedback. We employ an LLM-as-judge evaluation stage: a We d |d nOt trace Why the agent ChOOSGS Certai N

translation is accepted only if it compiles successfully and receives a semantic score

ks O HuHE tools. Future work: add tool-use rationales or CoT

} 111 logging if possible.
| % Lo0 * Raw REPL too verbose
t

o
oo

8(1)(1) | Full REPL dumps may exceed small model

t t t t t t t t t l context. Future: summarize or filter REPL but

o
o

retain full output for tactics for large LLM.

* Agent laziness
When feedback tool is not available, the agent
being lazy. Future: encourage self-refinement
through prompt engineering.

o
=S
P
i
Pt
——_G8a

Success rate (SR@K)

o
N
il
o D
-
—r— g
el
F——
p—apr—

00 + i . , . Get in Touch
0 5 10 15 20 24 .
K = number of tools called by the agent Eii ::"hE LinkedIn
P EE AR
We evaluate the agent under four tool configurations (via prompt-level toggling). ;I-ﬁl H- ok | ':.H'
Binary codes indicate which tool groups are active: 111 = all 6 tools enabled, 100 = - i

translator only, 010 = feedback tools only (REPL + theorem checker), 001 = search E

tools only (RAG** + online search**). ' ';:_f.!";'._-:'..'.
After the agent completes its reasoning-and-tool-calling process, the resulting
outputs are evaluated in a second stage by an LLM-as-judge. FU l-l paper (PD F)

	Slide 1: Patricio Gallardo, Maziar Raissi, **Ke Zhang**, **Sudhir Murthy**

