
Patricio Gallardo, Maziar Raissi, **Ke Zhang**, **Sudhir Murthy**

ALA: an Agentic Approach for

Translating Mathematics into Code for Proof-Assistant

We introduce an agentic translation pipeline where an LLM iteratively refines Lean4

code using tool feedback. We employ an LLM-as-judge evaluation stage: a

translation is accepted only if it compiles successfully and receives a semantic score

≥ 9.

Introduction

Our Approach

Key Contributions

• We introduce an agent with access to tools such

as specialist LLM (Herald), to iteratively refine

Lean4 code.

• We introduce a dataset of 400+ mathematical

statements in analysis, algebra, and topology.

• Achieves a 3× improvement in equivalent

translations vs. fine-tuned translator baseline

(22.5% → ~70% best configuration).

Limitations & Future Work

• No agent introspection

We did not trace why the agent chooses certain

tools. Future work: add tool-use rationales or CoT

logging if possible.

• Raw REPL too verbose

Full REPL dumps may exceed small model

context. Future: summarize or filter REPL but

retain full output for tactics for large LLM.

• Agent laziness

When feedback tool is not available, the agent

being lazy. Future: encourage self-refinement

through prompt engineering.

Case Study

Department of Mathematics, University of California, Riverside

NL math

statement

Raw

Lean4

code

Graded

Lean4

code

LLM-as-Judge

AGENTIC TOOL-USE LOOP

TOOL SELECTION

& EXECUTE

AGENT

ORCHESTRATOR

TOOL RUN

RESULT

CoT prompt

REPL pass

OR max

steps

reached?

YES

No

Lean4 Translator

REPL Compile Checker

Variable / Theorem Lookup

Retrieval-Augmented

Examples

File Write / Update

Web Search

Base tool

Tools & Inheritance Structure

Run in sandbox or

Docker container

Formalization is the activity of translating

mathematics written in pen-paper into verifiable

code. Our goal is to leverage AI to auto-formalize

mathematical statements into faithful Lean4 code.

Challenges:

• LLM’s hallucinate, applying false theorems and

citing non-existent data types

• Limited datasets for non-Olympiad, upper-division

and graduate level mathematics.

• Correct Lean4 code ≠ faithful translation. Need

semantic validation.

• Traditional mathematics is based on Set Theory

whereas Lean4 is based on Type Theory.

Get in Touch
LinkedIn

Full paper (PDF)

import Mathlib
open Real

def H0 : Matrix (Fin 2) (Fin 2) ℝ :=
fun i j => if i = (0 : Fin 2) then

if j = (0 : Fin 2) then 1 else 0
else if j = (0 : Fin 2) then 0 else -1

noncomputable def R (φ : ℝ) : Matrix
(Fin 2) (Fin 2) ℝ := fun i j =>

if i = (0:Fin 2) then
if j = (0:Fin 2) then cos φ else -sin φ else if j = (0:Fin 2)

then sin φ
else cos φ

noncomputable def H (θ:ℝ): Matrix (Fin 2)
(Fin 2) ℝ := H0 * R (-2 * θ)

theorem H_theta_eq_H0_mul_R_neg_two_theta
(θ:ℝ) : H θ = H0 * R (-2 * θ) := by sorry

We evaluate the agent under four tool configurations (via prompt-level toggling).

Binary codes indicate which tool groups are active: 111 = all 6 tools enabled, 100 =

translator only, 010 = feedback tools only (REPL + theorem checker), 001 = search

tools only (RAG** + online search**).

After the agent completes its reasoning-and-tool-calling process, the resulting
outputs are evaluated in a second stage by an LLM-as-judge.

	Slide 1: Patricio Gallardo, Maziar Raissi, **Ke Zhang**, **Sudhir Murthy**

