AQuaMaM: An Autoregressive,
Quaternion Manifold Model for Rapidly
Estimating Complex SO(3) Distributions

Michael A. Alcorn
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https://sites.google.com/view/michaelaalcorn

Modeling Uncertainty in 3D Rotations is a Fundamental
Bottleneck in Robotics

Estimating the pose of objects is a
prerequisite for many robotics
applications, from manipulation to
navigation.

This is uniquely challenging
because the 3D rotation group,
SO(3), lies on a curved manifold,
making standard probability
distributions like the multivariate
Gaussian unsuitable.

Crucially, models must account for
multimodality.

Figure 1: When minimizing the unimodal Bing-
ham loss for the two rotations R, and Rj, the
maximum likelihood estimate R is a rotation that
was never observed in the dataset. Note, the die
images are for demonstration purposes only, i.e.,
no images were used during optimization. Ry is
the 1dentity rotation.


https://www.scientificamerican.com/blog/roots-of-unity/a-few-of-my-favorite-spaces-so-3/

IPDF Has A Trade-off Between Precision and Speed

Implicit-PDFE (IPDF) is an elegant and
effective approach for modeling
distributions on SO(3).

Its Bottleneck: Inference requires N
forward passes through its network to
calculate likelihood, where N

determines the model's precision.
o This is prohibitively slow without massive
parallelization.

A Hidden Problem: IPDF is typically
trained with a much smaller N than is
used for testing (e.g., train = 4,096 vs
test = 2,359,296).

o  Makes it difficult to reason about how the
model will behave in the wild.

p(R|z) ~ 1 exp(f(z,R))

V > Nexp(f(x, Ri))

V =n%/N
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https://implicit-pdf.github.io/

Reframe the Problem: Instead of Modeling a Curved
Manifold, Model Its Flat Projection

e Directly modeling distributions on the

curved 3-sphere of unit quaternions is

difficult. Samples from ~S?
e The Key Insight: We can uniquely

represent every possible rotation using

only the first three components of a unit

quaternion (9., q., q.).
X V4 . N .
o  These three components must lie within a Projected onto B?
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https://www.cs.cornell.edu/courses/cs6630/2015fa/notes/pdf-transform.pdf
https://www.cs.cornell.edu/courses/cs6630/2015fa/notes/pdf-transform.pdf

AQuaMaM: A “Quaternion Language Model” for
rotations
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The Architecture is an Extended Vision Transformer
with a Partially Causal Attention Mask
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https://arxiv.org/abs/2010.11929

AQuaMaM Intelligently Enforces Constraints
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Figure 3: When modeling the conditional distribution p(g,|¢,) as a mixture of uniform distributions,
the geometric constraints of the unit quaternion are easily enforced. Here, I focus on non-negative
bins for clarity, i.e., intervals [a;, b;) where 0 < a < b < 1, but the same logic applies to negative

bins. Given g, = 0.7, we know that |g,| < v/1 — 0.72 because g has a unit norm. As a result,

the mixture proportion 7; for any bin where /1 — 0.72 < a; must be zero. AQuaMaM enforces
this constraint by assigning a value of —oo to the output scores for “strictly illegal bins” during

training.'’For the remaining bins, the corresponding uniform distribution is U(q,; a;, b;) where

b; = min(y/1 — 0.72,b;), i.e., the upper bound of the uniform distribution for the partially legal bin
is reduced to v/1 — 0.72,




On a Synthetic Dataset, AQuaMaM Recovers the True
Data Distribution While IPDF Dramatically Diverges
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Figure 5: On the infinite
toy dataset, AQuaMaM rapidly
reached its theoretical minimum
(classification) average negative
log-likelihood (NLL). In contrast,
IPDF never reached its theoreti-
cal minimum validation NLL, de-
spite converging to its training
theoretical minimum.
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On a 500,000-Image Die Dataset, AQuaMaM Achieves
Higher Likelihood and Lower Prediction Error

e Trained AQuaMaM from scratch on a large-scale dataset of rendered die
images with varying levels of ambiguity.

e Requires generalization
o  Only 135 of the 10,000 test set “quaternion sentences” were seen during training.

Model Average LL (1) Average Distance (|)

IPDF 12.29 4.57°
AQuaMaM 14.01 4.32°



AQuaMaM Precisely Captures Complex, Multimodal
Uncertainty




For Unambiguous Views, the Model Correctly
Concentrates All Probability at the True Pose
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The Framework Extends Naturally to Objects with
Continuous Symmetries
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And Peak Distributions...

Model Average LL (1)
Lieu et al. (2023) 13.93
AQuaMaM 29.51



https://arxiv.org/abs/2304.03937

And Spheres...

True Density AQuaMaM Density
True Density AQuaMaM Density

pix,y.2)

True density: mixture of two von Mises-Fisher distributions

p(x,y,z)


https://en.wikipedia.org/wiki/Von_Mises%E2%80%93Fisher_distribution

Questions?




