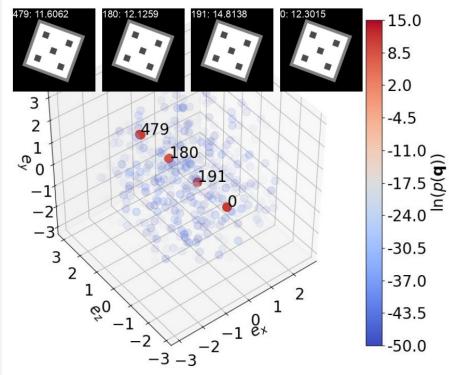
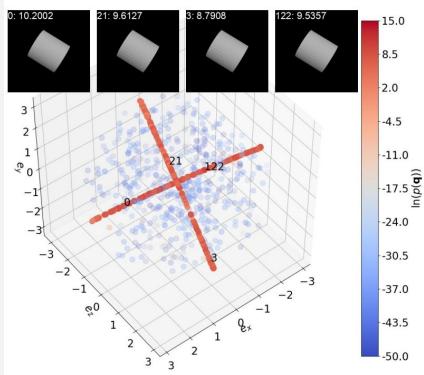
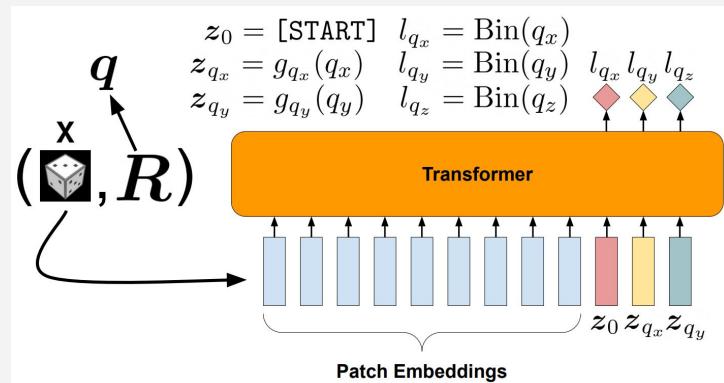


# AQuaMaM: An Autoregressive, Quaternion Manifold Model for Rapidly Estimating Complex $\text{SO}(3)$ Distributions

Michael A. Alcorn



# Modeling Uncertainty in 3D Rotations is a Fundamental Bottleneck in Robotics

- Estimating the pose of objects is a prerequisite for many robotics applications, from manipulation to navigation.
- This is uniquely challenging because the 3D rotation group,  $\text{SO}(3)$ , lies on a *curved* manifold, making standard probability distributions like the multivariate Gaussian unsuitable.
- Crucially, models must account for multimodality.

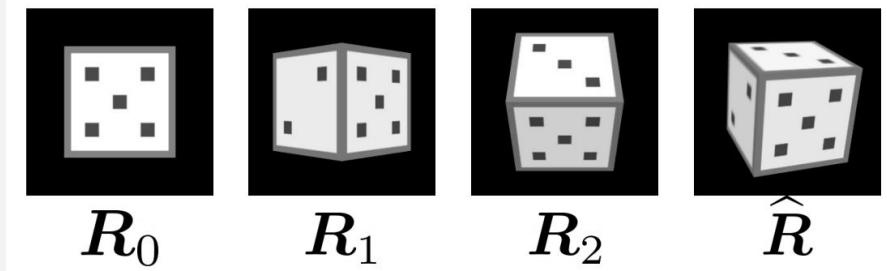


Figure 1: When minimizing the unimodal Bingham loss for the two rotations  $R_1$  and  $R_2$ , the maximum likelihood estimate  $\hat{R}$  is a rotation that was never observed in the dataset. Note, the die images are for demonstration purposes only, i.e., no images were used during optimization.  $R_0$  is the identity rotation.

# IPDF Has A Trade-off Between Precision and Speed

- Implicit-PDF (IPDF) is an elegant and effective approach for modeling distributions on  $\mathbf{SO}(3)$ .
- **Its Bottleneck:** Inference requires  $N$  forward passes through its network to calculate likelihood, where  $N$  determines the model's precision.
  - This is prohibitively slow without massive parallelization.
- **A Hidden Problem:** IPDF is typically trained with a much smaller  $N$  than is used for testing (e.g., train = 4,096 vs test = 2,359,296).
  - Makes it difficult to reason about how the model will behave in the wild.

$$p(R|x) \approx \frac{1}{V} \frac{\exp(f(x, R))}{\sum_i^N \exp(f(x, R_i))},$$

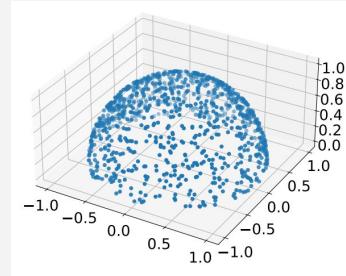
$$V = \pi^2/N$$


Volume of  $\mathbf{SO}(3)$

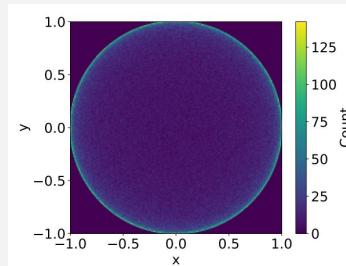
# Reframe the Problem: Instead of Modeling a Curved Manifold, Model Its Flat Projection

- Directly modeling distributions on the curved 3-sphere of unit quaternions is difficult.
- **The Key Insight:** We can uniquely represent every possible rotation using only the first three components of a unit quaternion ( $q_x, q_y, q_z$ ).
  - These three components must lie within a standard, non-curved unit 3-ball ( $B^3$ ).
- This creates a bijective mapping from a simple, flat space (the 3-ball) to the complex, curved space of rotations (the “hyper-hemisphere”  $\sim H^1$ ).
- We can now model the distribution in this simpler space and use a density transformation to get the exact probability on the manifold.

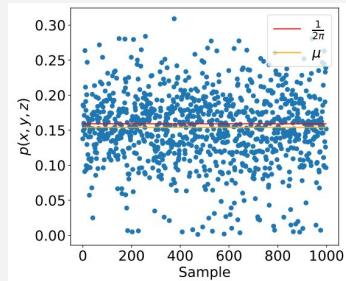
Samples from  $\sim S^2$



Projected onto  $B^2$  and binned

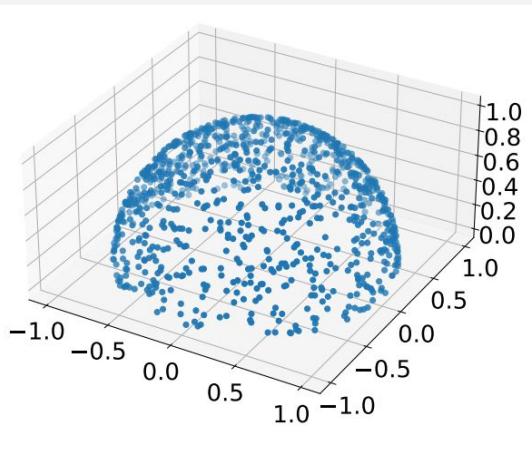


Estimated densities

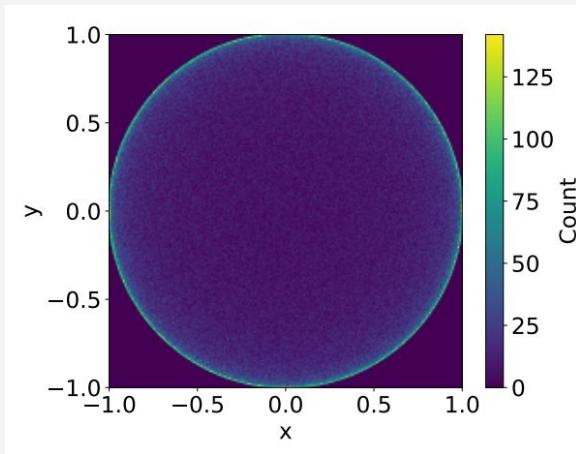


# AQuaMaM: A “Quaternion Language Model” for rotations

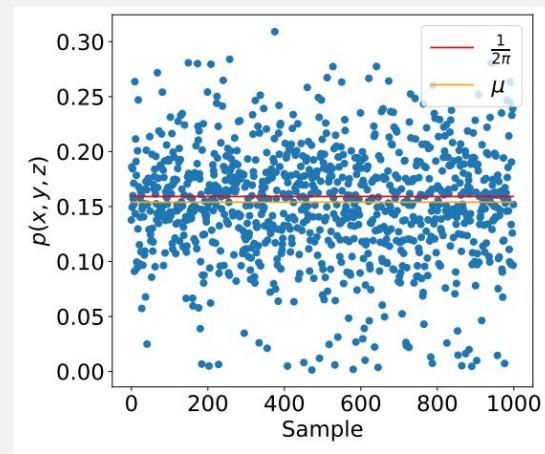
Samples from  $\sim S^2$



Projected onto  $B^2$  and binned



Estimated densities



$$f(x, y) = [x, y, z]$$

$$z = \sqrt{1 - x^2 - y^2}$$

$$\mathbf{J} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \frac{-x}{z} & \frac{-y}{z} \end{bmatrix}$$

$$a = \sqrt{\left| \begin{pmatrix} 0 & 1 \\ \frac{-x}{z} & \frac{-y}{z} \end{pmatrix} \right|^2 + \left| \begin{pmatrix} 1 & 0 \\ \frac{-x}{z} & \frac{-y}{z} \end{pmatrix} \right|^2 + \left| \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right|^2}$$

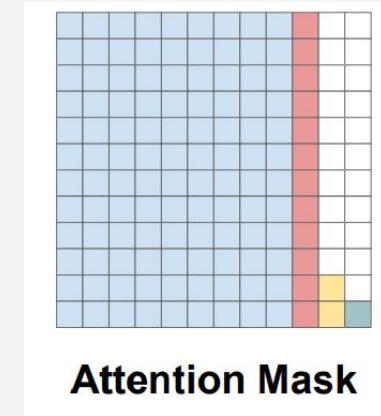
$$= \sqrt{\frac{x^2}{z^2} + \frac{y^2}{z^2} + 1} = \sqrt{\frac{x^2 + y^2 + z^2}{z^2}} = \frac{1}{z}$$

$$p(x, y, z) = \frac{p(x, y)}{a}$$

$$= p(x, y)z$$

$$= p(x)p(y|x)z$$

# The Architecture is an Extended Vision Transformer with a Partially Causal Attention Mask



$$\begin{aligned}
 p(q_x, q_y, q_z) &= \pi_{q_x} \frac{N}{2} \pi_{q_y} \frac{1}{\omega_{q_y}} \pi_{q_z} \frac{1}{\omega_{q_z}} \\
 &= \pi_{q_x} \pi_{q_y} \pi_{q_z} \frac{N}{2 \omega_{q_y} \omega_{q_z}}
 \end{aligned}$$

# AQuaMaM Intelligently Enforces Constraints

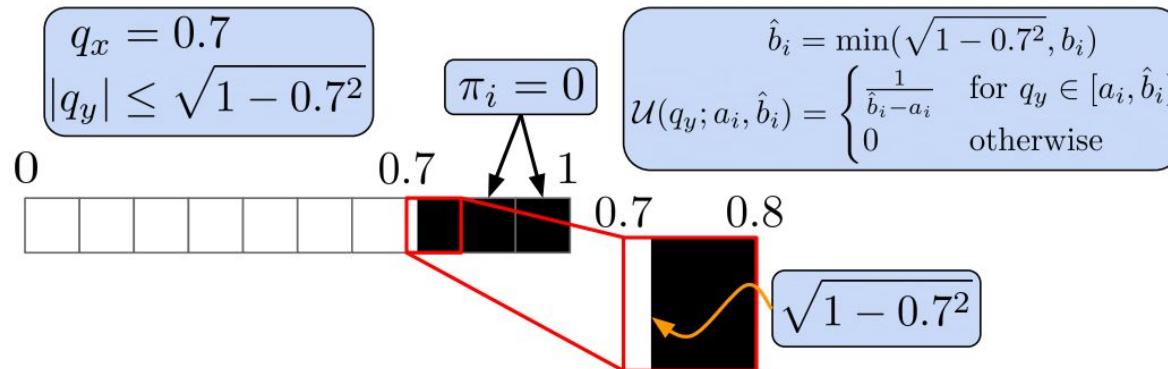


Figure 3: When modeling the conditional distribution  $p(q_y|q_x)$  as a mixture of uniform distributions, the geometric constraints of the unit quaternion are easily enforced. Here, I focus on non-negative bins for clarity, i.e., intervals  $[a_i, b_i]$  where  $0 \leq a < b \leq 1$ , but the same logic applies to negative bins. Given  $q_x = 0.7$ , we know that  $|q_y| \leq \sqrt{1 - 0.7^2}$  because  $q$  has a unit norm. As a result, the mixture proportion  $\pi_i$  for any bin where  $\sqrt{1 - 0.7^2} < a_i$  must be zero. AQuaMaM enforces this constraint by assigning a value of  $-\infty$  to the output scores for “strictly illegal bins” during training.<sup>10</sup> For the remaining bins, the corresponding uniform distribution is  $\mathcal{U}(q_y; a_i, \hat{b}_i)$  where  $\hat{b}_i = \min(\sqrt{1 - 0.7^2}, b_i)$ , i.e., the upper bound of the uniform distribution for the partially legal bin is reduced to  $\sqrt{1 - 0.7^2}$ .

# On a Synthetic Dataset, AQuaMaM Recovers the True Data Distribution While IPDF Dramatically Diverges



Figure 5: On the infinite toy dataset, AQuaMaM rapidly reached its theoretical minimum (classification) average negative log-likelihood (NLL). In contrast, IPDF never reached its theoretical minimum validation NLL, despite converging to its training theoretical minimum.

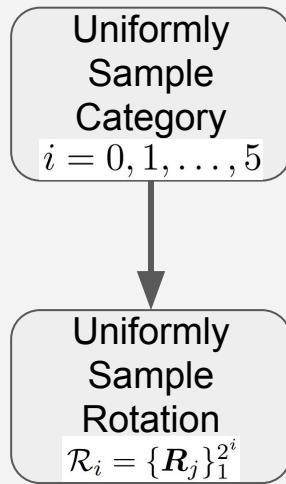
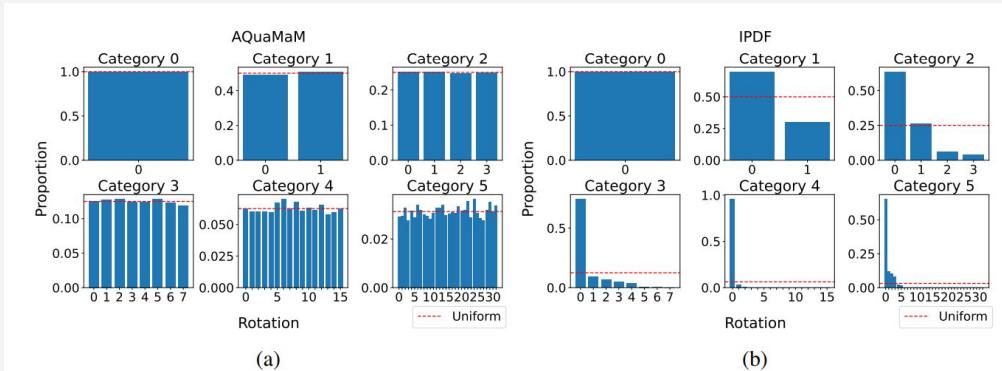


Figure 6: (a) The proportions of sampled rotations from the AQuaMaM model trained on the infinite toy dataset closely approximate the expected uniform distributions. (b) In contrast, despite approaching its theoretical minimum log-likelihood during training (Figure 5), the proportions of sampled rotations from the IPDF model drastically diverge from the expected uniform distributions.

| Model   | Average LL ( $\uparrow$ ) | Average Distance ( $\downarrow$ ) |
|---------|---------------------------|-----------------------------------|
| IPDF    | 12.32                     | 0.84°                             |
| AQuaMaM | <b>27.12</b>              | <b>0.04°</b>                      |

IPDF would need to use six *trillion* cells for it to be theoretically possible to match AQuaMaM's average log-likelihood

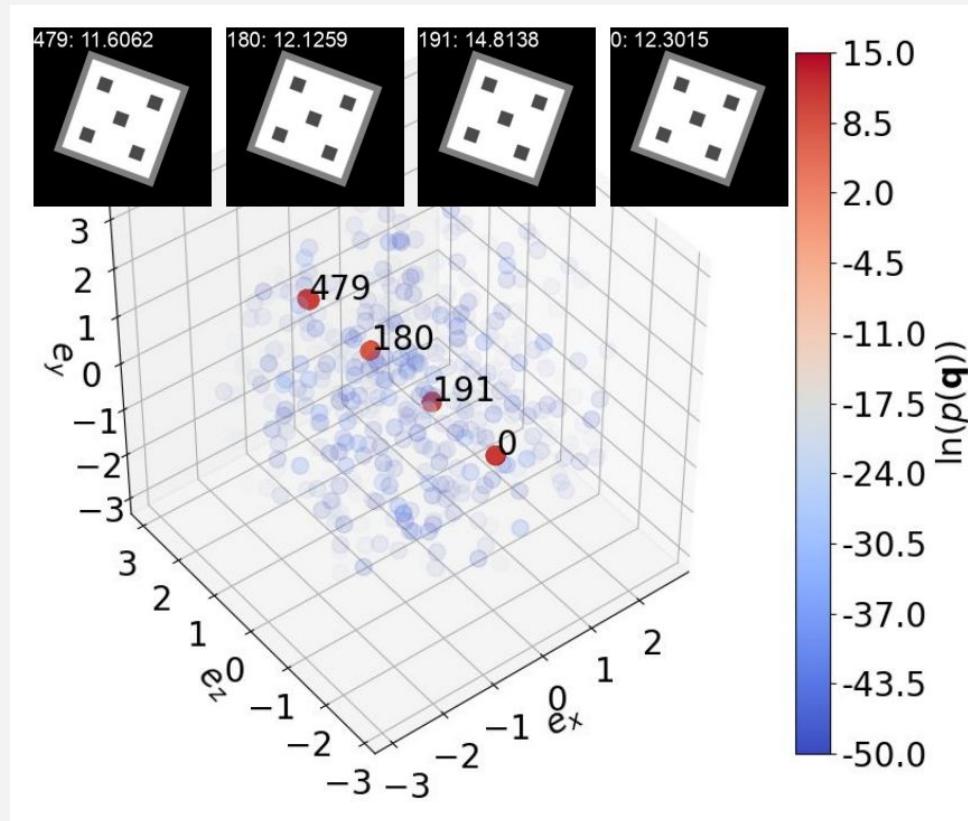
$$\frac{N q_w}{2\omega_{q_y} \omega_{q_z}} \geq \frac{N^3 q_w}{8}$$

# On a 500,000-Image Die Dataset, AQuaMaM Achieves Higher Likelihood and Lower Prediction Error

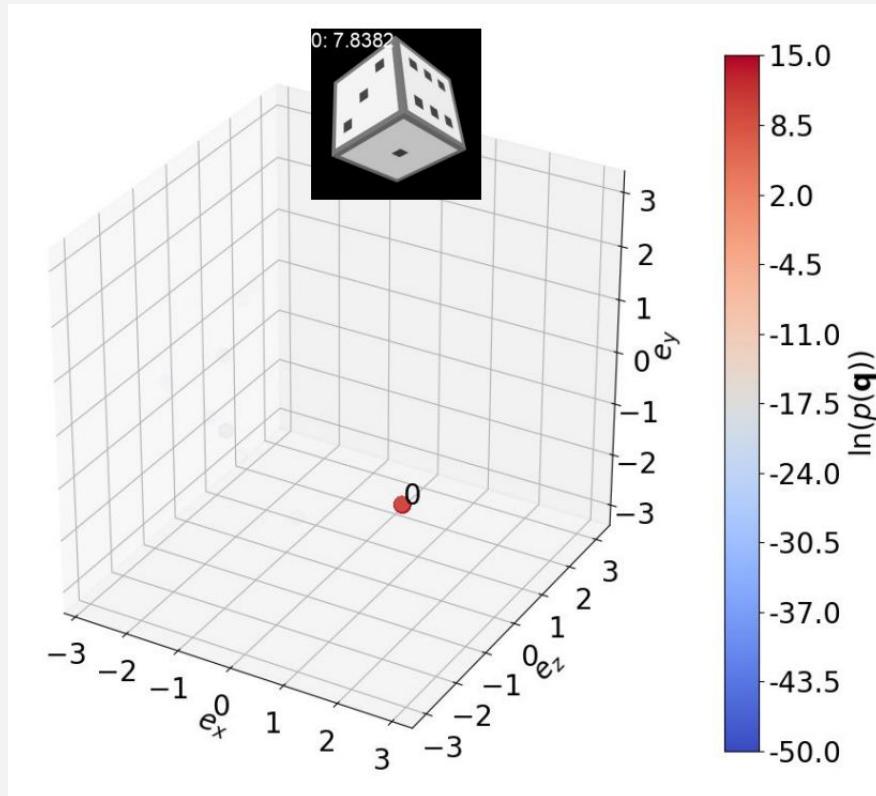
- Trained AQuaMaM from scratch on a large-scale dataset of rendered die images with varying levels of ambiguity.
- Requires generalization
  - Only 135 of the 10,000 test set “quaternion sentences” were seen during training.

| Model   | Average LL ( $\uparrow$ ) | Average Distance ( $\downarrow$ ) |
|---------|---------------------------|-----------------------------------|
| IPDF    | 12.29                     | 4.57°                             |
| AQuaMaM | <b>14.01</b>              | <b>4.32°</b>                      |

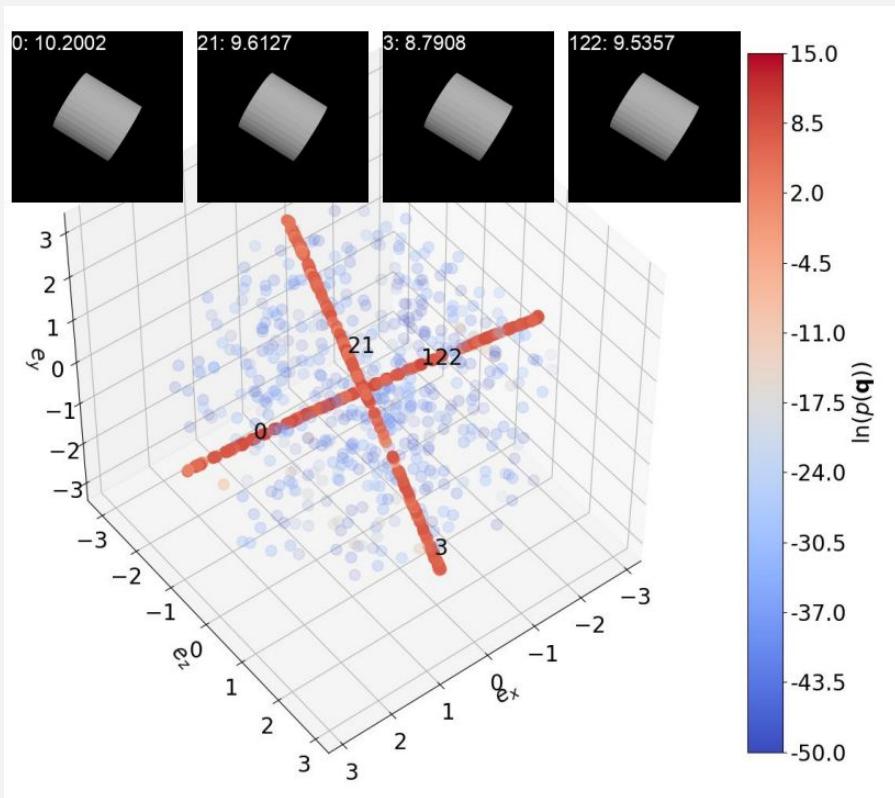
# AQuaMaM Precisely Captures Complex, Multimodal Uncertainty



# For Unambiguous Views, the Model Correctly Concentrates All Probability at the True Pose



# The Framework Extends Naturally to Objects with Continuous Symmetries

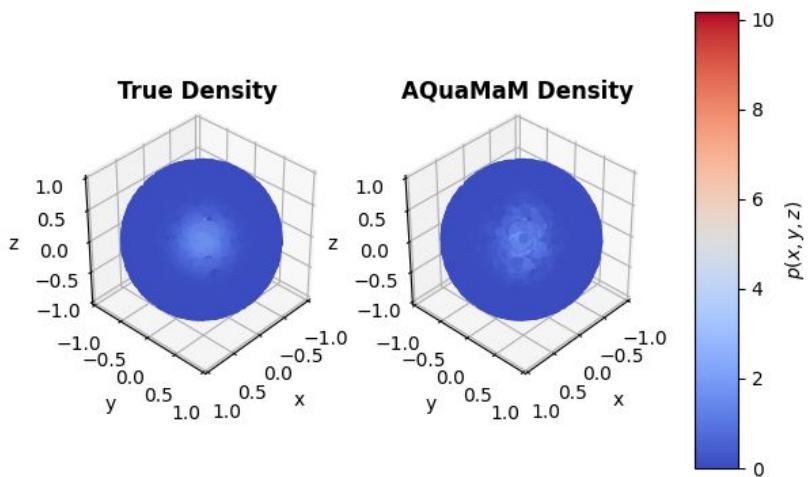
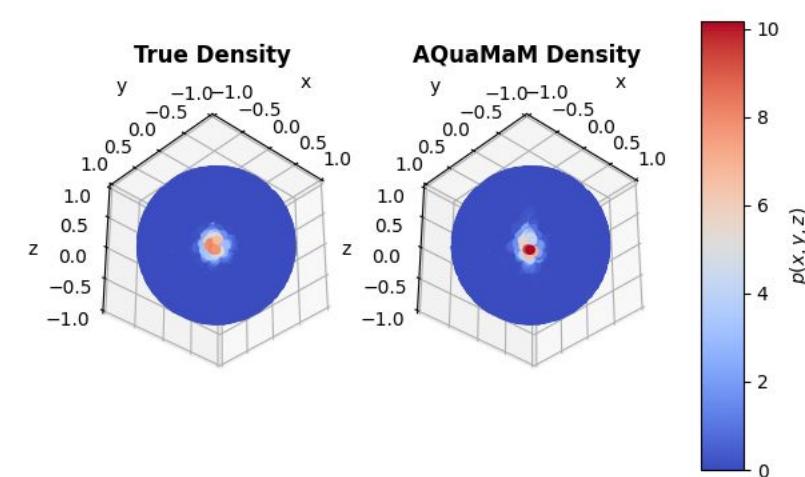


| Model   | Average LL ( $\uparrow$ ) |
|---------|---------------------------|
| IPDF    | 5.94                      |
| AQuaMaM | <b>7.24</b>               |

# And Peak Distributions...

| <b>Model</b>              | <b>Average LL (↑)</b> |
|---------------------------|-----------------------|
| <u>Lieu et al. (2023)</u> | 13.93                 |
| AQuaMaM                   | <b>29.51</b>          |

# And Spheres...



True density: mixture of two [von Mises-Fisher distributions](#)

# Questions?

