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Complexnumber Ambiguity

Complex numbers (i) form the foundation of Quantum Mechanics.
But what if the complex number itself could exist in a state of
superposition?

Thought Experiment: Origin of the Imaginary Unit

Consider an equation with two real-structured solutions:
Y =1++2
Now, let's multiply these two conjugate-like terms:
Y, Y. =(14+v2)(1-v2)=1—-2=-1
Thus,

Yi=_1 — Y =+

This suggests that the imaginary unit (i) can be interpreted as emerging
from the interaction (or product) of two opposing real-valued roots.
Hence, instead of considering just i, we might view Y = %i as the more
fundamental representation - a dual or superposed origin of the imaginary
dimension.
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Complex 1D Conjugate to 2D Superposition

Consider the general 1D conjugate family:
Y=ax+8, aofeR

* Infinite solutions exist for any & and /3

* The product of the conjugates is:
Y- Y. =(a+B)a—pB)=a’ - =-1
* However, these solutions do not satisfy the properties of the imaginary unit:
2

+i-—i=1 +i¥=-1, —-i?=-1

This indicates that +i cannot exist as a single 1D number.

In 2D, +i can be represented as matrices:

0 —1 g 1
"T+:L 0]* J‘:[—l 0}

e Squaring reproduces the imaginary unit:

TRl FodimTow—
e Multiplying the two matrices mimics the 1D conjugate product:
B B i [ =3)

* Observing J, and J_, the —1 appears to fluctuate between two axes

This naturally raises the question: what if J, and J_ exist in a quantum superposition?



Complex 1D Conjugate to 2D Superposition

Define the continuous 2D superposition:
J(t) = cost J; +sint J_

Expansion using matrix form: Varying k and © Simultaneously

= A=(0.00, -1.00)

] K =0.00 mmm B - (1.00, 0.00)

B = A4B = (1.00, -1.00)

B 0 1 ; 0 1 0 cost — sint :
Ay =mont [1 {]] }smt[ 1 U] N [Sint cost 0 ]

Y-axis
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Generalization:

a b(cost — sint :

. ( ) , a,beR 1
b(sint — cost) a

e +iin 2D can be continuously rotated and superposed <

» Coefficients a, b allow representation of generalized 2D operators

X-axis

Quantum Complex Number:

Z=a+bJ(1)

e This represents a time-dependent, quantum-like complex number in 2D



Transformers and Quantum Complex Numbers

QIC Linear Layers

The fundamental building block extends matrix multiplication to QIC algebra. For input x = &, +xp.J
and weights W = W, + W,,.J:

y=Wx+b (13)
= [Waza + Wyl —1 + sin(20) )|+ b, ] + [Wazs + Wiz, + b J (14)

Implementation maintains separate real and imaginary components, with interactions governed by
the learnable £.

QIC Attention Mechanism

For QIC attention with queries ()., keys K, and values V', we compute attention scoresas S = QK =
exp(| 8|/ vdk)

Sy + Sy.J, apply softmax to obtain attention weights a;; = > TSl 17T
L goexpd oy oy

as Attention(), K, V') = aV, + aViJ.

Multi-head attention uses head-specific phase parameters /,, allowing different heads to operate in
different algebraic regimes:

head;, = Attentiong, (QW*, KW vivY) (15)

and aggregate values

QIC-LayerNorm(z) = ’;.'; —#
el

(16)

where yt and o are computed over the magnitudes |z;| across the normalized dimension.

For activation functions, we adopt magnitude-based nonlinearities that preserve the QIC structure,
inspired by the success of gated linear units [23]:
QIC-ReLU(z) = ReLU(|z|)

£

(17)
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Results

Model Parameters: Standard = 1,466,370 | QIC = 774,407 (-47.2%)

Dataset Metric

IMDB Sentiment Accuracy

Training Time/Epoch

AG News Accuracy

Final Loss
Overall Avg. Accuracy
Highlights:

Standard

100.0%

115.15

73.3%

0.4056

86.7%

¢ QIC achieves 47.2% fewer parameters (774K vs 1.47M).

* 10.8% faster training per epoch.

* 4.7% higher accuracy on multi-class task.

QIC

100.0%

102.7s

78.0%

0.4066

89.0%

¢ Demonstrates quantum-inspired efficiency without loss of performance.

Vaswani et al., "Attention Is All You Need,” NeuriPS 2U1/.

Improvement

-10.8%

+4.7%

+0.2%

+2.3%



Abliation Studies

Learned vs. Fixed ¢: Fixing # = 7 /4 reduces accuracy by 2.8%, demonstrating that learning the
algebraic unit is crucial. When # = 0 (equivalent to standard complex numbers with fixed #), accuracy
drops by 3.2%, confirming that the learnable superposition provides genuine benefits beyond fixed
complex arithmetic.

Table 2: Ablation study results on AG News dataset

Configuration Accuracy Parameters Analysis
Full QIC Transformer 78.0% 774,407 Full model
Fixed = /4 75.2% 774,396  —2.8% accuracy
Fixed # = 0 (standard complex) 74.8% 774.396 —3.2% accuracy
Global # (not per-head) 76.4% 774,401  —1.6% accuracy
Parameter-matched real baseline 73.1% 774,400 —4.9% accuracy
Standard Transformer 73.3% 1,466,370 2x parameters

Scope of ¢: Using a single global ¢ instead of per-head parameters reduces accuracy by 1.6%,
validating that different attention heads benefit from operating in different algebraic regimes.

Initialization Sensitivity: We tested three initializations: § = 0, ¢ = 7 /4, and random ¢ ~
U(0,m/2). All converged to similar final accuracy (40.3%), with final # values clustering around
0.75-0.85 regardless of initialization, suggesting a learnable optimum.



Comparisons & Parameters Sensitivity

Model Accuracy Parameters
Standard Real Transformer 73.3% . 466,370
Complex Transformer (fixed ¢) T4.8% 774,396
Complex Transformer (i with phase gates)  75.6% 812,450
(Quaternion Transformer 75.1% &06,200
QIC Transformer (ours) 78.0% 774,407

B.3 Hyperparameter Sensitivity

We tested sensitivity to key hyperparameters:

Learning Rate: Tested {1[}_4, 5x107%, 1072, 5 % 1{]_3}. QIC performance stable across range, with optimum
at 107 (same as standard). QIC shows shightly wider stable range.

Batch Size: Tested {16, 32, 64, 128}. Performance similar across range. Memory advantage of QIC more
pronounced at larger batch sizes.

Phase Parameter Initialization: Tested 6y € {0,7/6, 7/4, 7/3, random}. All converged to similar final
performance (+0.3%) and similar final # values (0.75-0.85), indicating robust learning dynamics.

Baselines reproduced from Vaswani et al. (2017); Trabelsi et al. (2018); Chi et al. (2020); Parcollet et al.
(2019, 2021).



Future Work / Work In Progress

Discovered a more stable layer, analogous to a linear layer (W'X), in neural networks with quantum complex
numbers J(0); tested on CIFAR-10 and extending toward more powerful transformers.
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Future Work / Work In Progress

We experimented with variants of a stable layer analogous to a linear layer (W™X), drawing research direction from
this quantum-complex phenomenon, validated on CIFAR-100, and extended toward more powerful neural net

architecture.

Dataset Architecture Standard MLLP  New -Linear A Relative
CIFAR-100 Small [256] 27.59 + 0.21 2077+ 034 +2.19 +7.9%
CIFAR-100 Medium [512-256] 2695 +026 3408+0.14 +7.14 +26.5%
CIFAR-100 Large [1024-512-256] 25.02 +0.25 3351+016 +849 +33.9%
SVHN Small [256] 7697 +0.12 7959 +0.16 +262 +34%
SVHN Medium [512-256] 8049 +0.26 8029+017 -020 —-0.2%
SVHN Large [1024-512-256] 8254 +£0.11 8610+0.25 +356 +4.3%




Future Work / Work In Progress

Discovered an off-policy Auto-Explore & Exploit algorithm

(eliminating the epsilon-greedy method) leveraging the Quantum Complex Number J(0)
phenomenon; currently taking small steps toward shaping the future of RL in LLMs.

|IQL is Middle Ground between UCB and Q-Learning:
No future step lookups (as in UCB) &
No random action selection (as in Q-Learning)

Convergence Comparison on MountainCar-v0
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