

# Quantum-Inspired Complex Transformers: Resolving the Fundamental Algebraic Ambiguity for Enhanced Neural Representations

NEURIPS 2025 Workshop (NEGEL)

**Bhargav Patel**

Cambrian College  
Laurentian University  
(Graduated Masters Student)

# Complexnumber Ambiguity

- Complex numbers ( $i$ ) form the foundation of Quantum Mechanics.

But what if the **complex number itself** could exist in a **state of superposition**?

Thought Experiment: Origin of the Imaginary Unit

Consider an equation with two real-structured solutions:

$$Y = 1 \pm \sqrt{2}$$

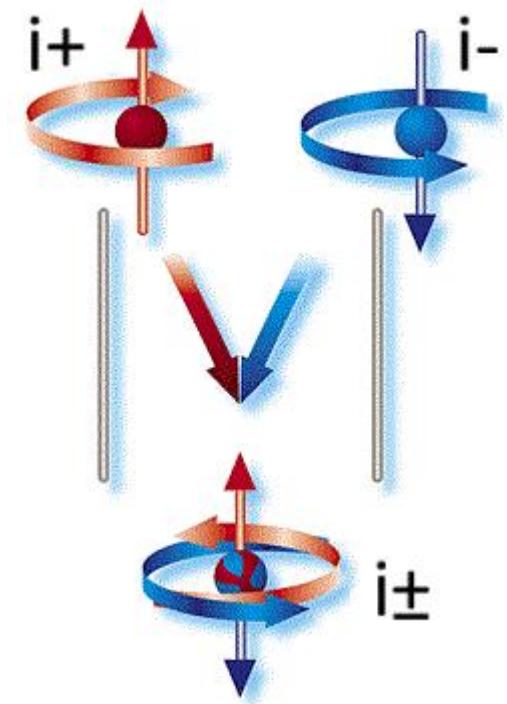
Now, let's multiply these two conjugate-like terms:

$$Y_+ \cdot Y_- = (1 + \sqrt{2})(1 - \sqrt{2}) = 1 - 2 = -1$$

Thus,

$$Y^2 = -1 \implies Y = \pm i$$

- This suggests that the imaginary unit ( $i$ ) can be interpreted as emerging from the interaction (or product) of two opposing real-valued roots.
- Hence, instead of considering just  $i$ , we might view  $Y = \pm i$  as the more fundamental representation - a dual or superposed origin of the imaginary dimension.



# Complex 1D Conjugate to 2D Superposition

Consider the general 1D conjugate family:

$$Y = \alpha \pm \beta, \quad \alpha, \beta \in \mathbb{R}$$

- Infinite solutions exist for any  $\alpha$  and  $\beta$
- The product of the conjugates is:

$$Y_+ \cdot Y_- = (\alpha + \beta)(\alpha - \beta) = \alpha^2 - \beta^2 = -1$$

- However, these solutions **do not satisfy the properties of the imaginary unit**:

$$+i \cdot -i = 1, \quad +i^2 = -1, \quad -i^2 = -1$$

This indicates that  $\pm i$  cannot exist as a single 1D number.

In 2D,  $\pm i$  can be represented as matrices:

$$J_+ = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad J_- = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

- Squaring reproduces the imaginary unit:

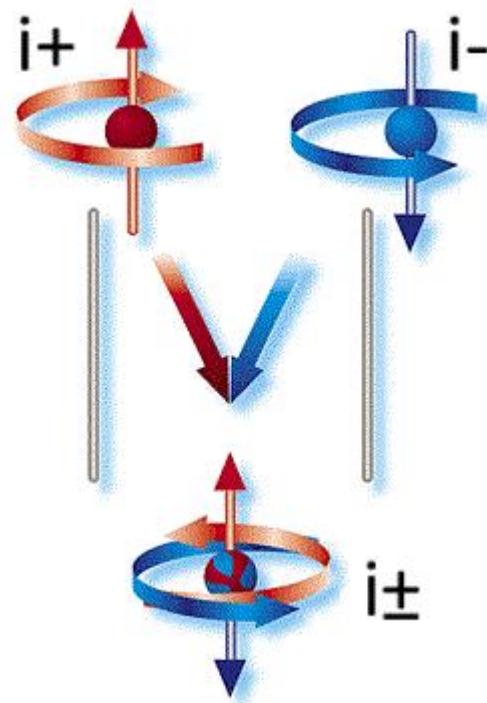
$$J_+ \cdot J_+ = -I \sim +i^2, \quad J_- \cdot J_- = -I \sim -i^2$$

- Multiplying the two matrices mimics the 1D conjugate product:

$$J_+ \cdot J_- = I \sim (+i) \cdot (-i)$$

- Observing  $J_+$  and  $J_-$ , the  $-1$  appears to **fluctuate between two axes**

This naturally raises the question: what if  $J_+$  and  $J_-$  exist in a **quantum superposition**?



# Complex 1D Conjugate to 2D Superposition

Define the continuous 2D superposition:

$$J(t) = \cos t J_+ + \sin t J_-$$

Expansion using matrix form:

$$J_+ = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad J_- = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$J(t) = \cos t \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} + \sin t \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \cos t - \sin t \\ \sin t - \cos t & 0 \end{bmatrix}$$

Generalization:

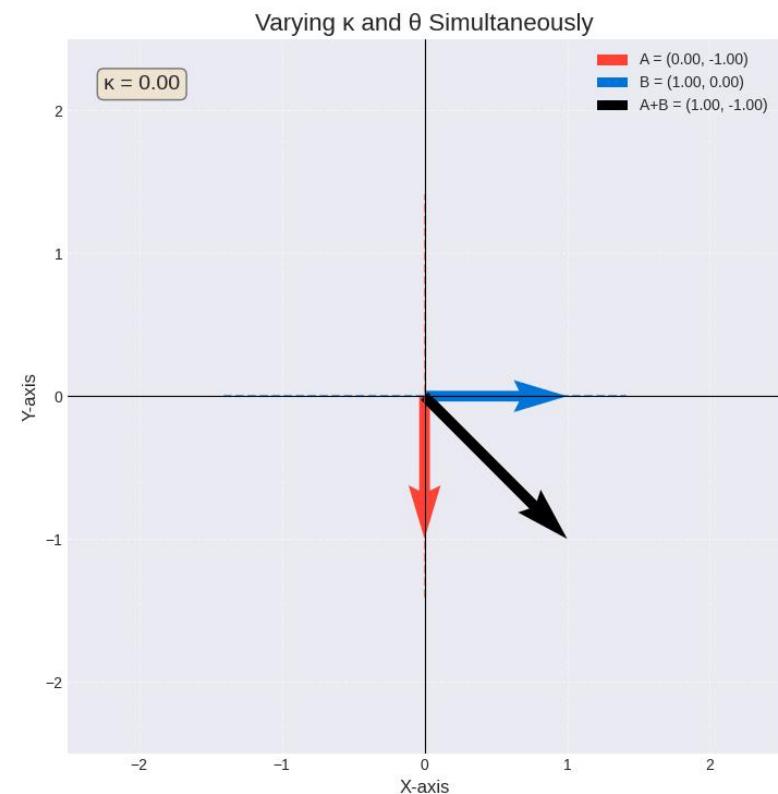
$$\begin{bmatrix} a & b(\cos t - \sin t) \\ b(\sin t - \cos t) & a \end{bmatrix}, \quad a, b \in \mathbb{R}$$

- $\pm i$  in 2D can be **continuously rotated and superposed**
- Coefficients  $a, b$  allow representation of **generalized 2D operators**

Quantum Complex Number:

$$Z = a + b J(t)$$

- This represents a **time-dependent, quantum-like complex number** in 2D



# Transformers and Quantum Complex Numbers

## QIC Linear Layers

The fundamental building block extends matrix multiplication to QIC algebra. For input  $x = x_a + x_b J$  and weights  $W = W_a + W_b J$ :

$$y = Wx + b \quad (13)$$

$$= [W_a x_a + W_b x_b (-1 + \sin(2\theta)) + b_a] + [W_a x_b + W_b x_a + b_b] J \quad (14)$$

Implementation maintains separate real and imaginary components, with interactions governed by the learnable  $\theta$ .

## QIC Attention Mechanism

For QIC attention with queries  $Q$ , keys  $K$ , and values  $V$ , we compute attention scores as  $S = QK^T = S_a + S_b J$ , apply softmax to obtain attention weights  $\alpha_{ij} = \frac{\exp(|S_{ij}|/\sqrt{d_k})}{\sum_k \exp(|S_{ik}|/\sqrt{d_k})}$ , and aggregate values as  $\text{Attention}(Q, K, V) = \alpha V_a + \alpha V_b J$ .

Multi-head attention uses head-specific phase parameters  $\theta_h$ , allowing different heads to operate in different algebraic regimes:

$$\text{head}_h = \text{Attention}_{\theta_h}(QW_h^Q, KW_h^K, VW_h^V) \quad (15)$$

$$\text{QIC-LayerNorm}(z) = \gamma \frac{z - \mu}{\|\sigma\|_2} \quad (16)$$

where  $\mu$  and  $\sigma$  are computed over the magnitudes  $|z_i|$  across the normalized dimension.

For activation functions, we adopt magnitude-based nonlinearities that preserve the QIC structure, inspired by the success of gated linear units [23]:

$$\text{QIC-ReLU}(z) = \text{ReLU}(|z|) \cdot \frac{z}{|z|} \quad (17)$$

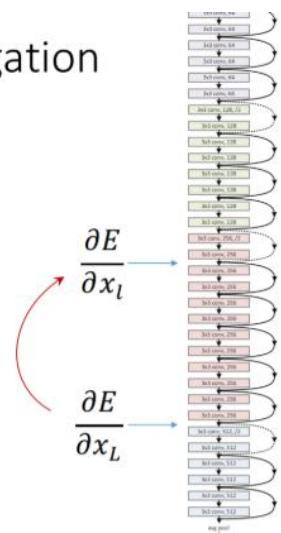
**Residual Like Connection: while computing gradient**

$$\frac{\partial \mathcal{L}}{\partial \theta} = 2 \cos(2\theta) \sum_{i,j} \frac{\partial \mathcal{L}}{\partial y_{a,ij}} W_{b,ij} x_{b,ij}$$

Very smooth backward propagation

$$\frac{\partial E}{\partial x_l} = \frac{\partial E}{\partial x_L} \left( 1 + \frac{\partial}{\partial x_l} \sum_{i=1}^{L-1} F(x_i) \right)$$

- Any  $\frac{\partial E}{\partial x_L}$  is **directly** back-prop to any  $\frac{\partial E}{\partial x_l}$ , plus **residual**.
- Any  $\frac{\partial E}{\partial x_l}$  is **additive**; unlikely to vanish
  - in contrast to **multiplicative**:  $\frac{\partial E}{\partial x_l} = \prod_{i=l}^{L-1} W_i \frac{\partial E}{\partial x_L}$



Residual Networks (ResNets, He et al., 2015)

# Results

**Model Parameters:** Standard = 1,466,370 | QIC = 774,407 (-47.2%)

| Dataset        | Metric              | Standard | QIC    | Improvement |
|----------------|---------------------|----------|--------|-------------|
| IMDB Sentiment | Accuracy            | 100.0%   | 100.0% | —           |
|                | Training Time/Epoch | 115.1s   | 102.7s | -10.8%      |
| AG News        | Accuracy            | 73.3%    | 78.0%  | +4.7%       |
|                | Final Loss          | 0.4056   | 0.4066 | +0.2%       |
| Overall        | Avg. Accuracy       | 86.7%    | 89.0%  | +2.3%       |

## Highlights:

- QIC achieves 47.2% fewer parameters (774K vs 1.47M).
- 10.8% faster training per epoch.
- 4.7% higher accuracy on multi-class task.
- Demonstrates quantum-inspired efficiency without loss of performance.

# Abliation Studies

**Learned vs. Fixed  $\theta$ :** Fixing  $\theta = \pi/4$  reduces accuracy by 2.8%, demonstrating that learning the algebraic unit is crucial. When  $\theta = 0$  (equivalent to standard complex numbers with fixed  $i$ ), accuracy drops by 3.2%, confirming that the learnable superposition provides genuine benefits beyond fixed complex arithmetic.

Table 2: Ablation study results on AG News dataset

| Configuration                         | Accuracy | Parameters | Analysis              |
|---------------------------------------|----------|------------|-----------------------|
| Full QIC Transformer                  | 78.0%    | 774,407    | Full model            |
| Fixed $\theta = \pi/4$                | 75.2%    | 774,396    | -2.8% accuracy        |
| Fixed $\theta = 0$ (standard complex) | 74.8%    | 774,396    | -3.2% accuracy        |
| Global $\theta$ (not per-head)        | 76.4%    | 774,401    | -1.6% accuracy        |
| Parameter-matched real baseline       | 73.1%    | 774,400    | -4.9% accuracy        |
| Standard Transformer                  | 73.3%    | 1,466,370  | 2 $\times$ parameters |

**Scope of  $\theta$ :** Using a single global  $\theta$  instead of per-head parameters reduces accuracy by 1.6%, validating that different attention heads benefit from operating in different algebraic regimes.

**Initialization Sensitivity:** We tested three initializations:  $\theta = 0$ ,  $\theta = \pi/4$ , and random  $\theta \sim \mathcal{U}(0, \pi/2)$ . All converged to similar final accuracy ( $\pm 0.3\%$ ), with final  $\theta$  values clustering around 0.75-0.85 regardless of initialization, suggesting a learnable optimum.

# Comparisons & Parameters Sensitivity

| Model                                       | Accuracy     | Parameters     |
|---------------------------------------------|--------------|----------------|
| Standard Real Transformer                   | 73.3%        | 1,466,370      |
| Complex Transformer (fixed $i$ )            | 74.8%        | 774,396        |
| Complex Transformer ( $i$ with phase gates) | 75.6%        | 812,450        |
| Quaternion Transformer                      | 75.1%        | 806,200        |
| <b>QIC Transformer (ours)</b>               | <b>78.0%</b> | <b>774,407</b> |

## B.3 Hyperparameter Sensitivity

We tested sensitivity to key hyperparameters:

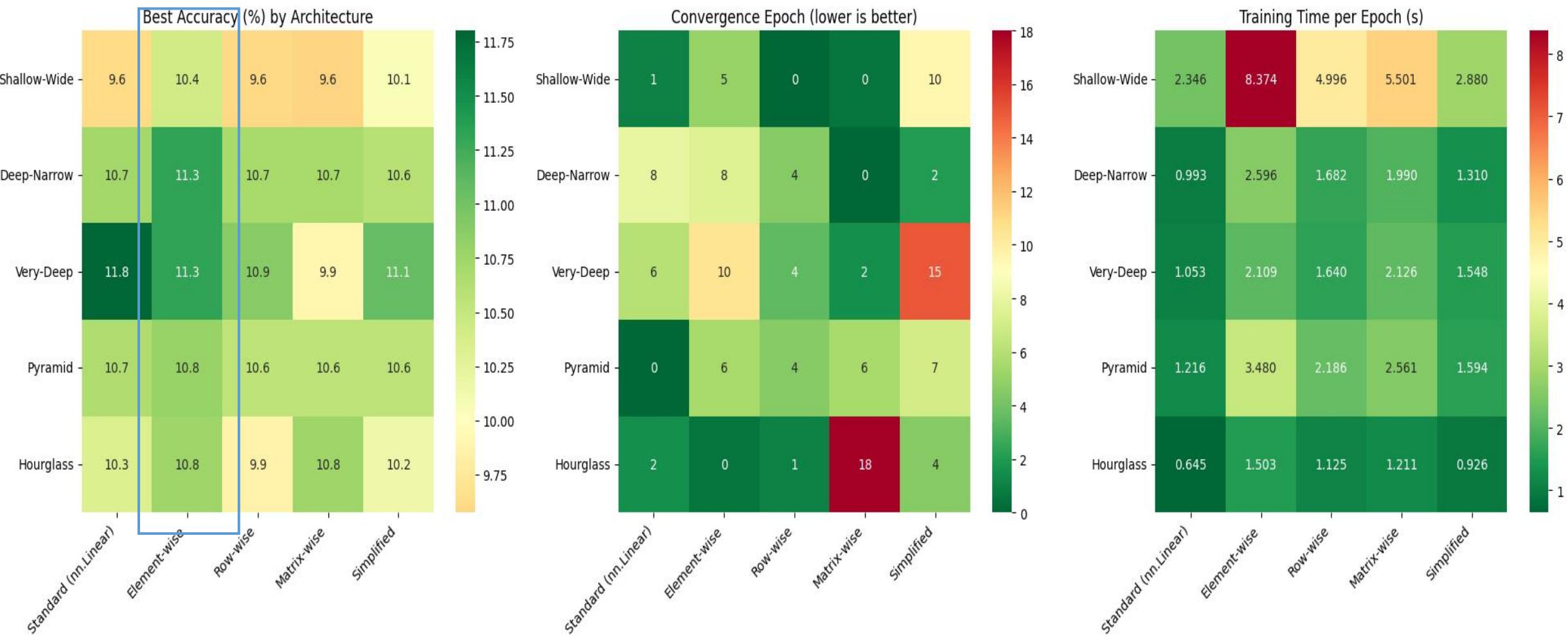
**Learning Rate:** Tested  $\{10^{-4}, 5 \times 10^{-4}, 10^{-3}, 5 \times 10^{-3}\}$ . QIC performance stable across range, with optimum at  $10^{-3}$  (same as standard). QIC shows slightly wider stable range.

**Batch Size:** Tested  $\{16, 32, 64, 128\}$ . Performance similar across range. Memory advantage of QIC more pronounced at larger batch sizes.

**Phase Parameter Initialization:** Tested  $\theta_0 \in \{0, \pi/6, \pi/4, \pi/3, \text{random}\}$ . All converged to similar final performance ( $\pm 0.3\%$ ) and similar final  $\theta$  values (0.75-0.85), indicating robust learning dynamics.

# Future Work / Work In Progress

Discovered a more **stable layer, analogous to a linear layer** ( $W^T X$ ), in neural networks with quantum complex numbers  $J(\theta)$ ; tested on CIFAR-10 and extending toward more powerful transformers.



## Future Work / Work In Progress

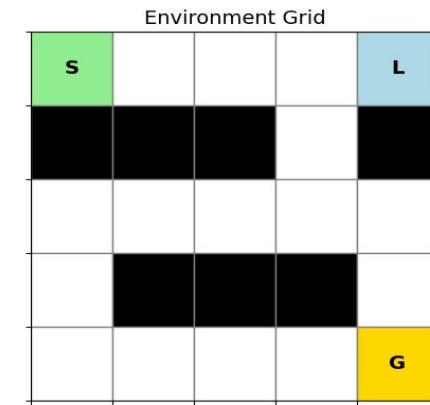
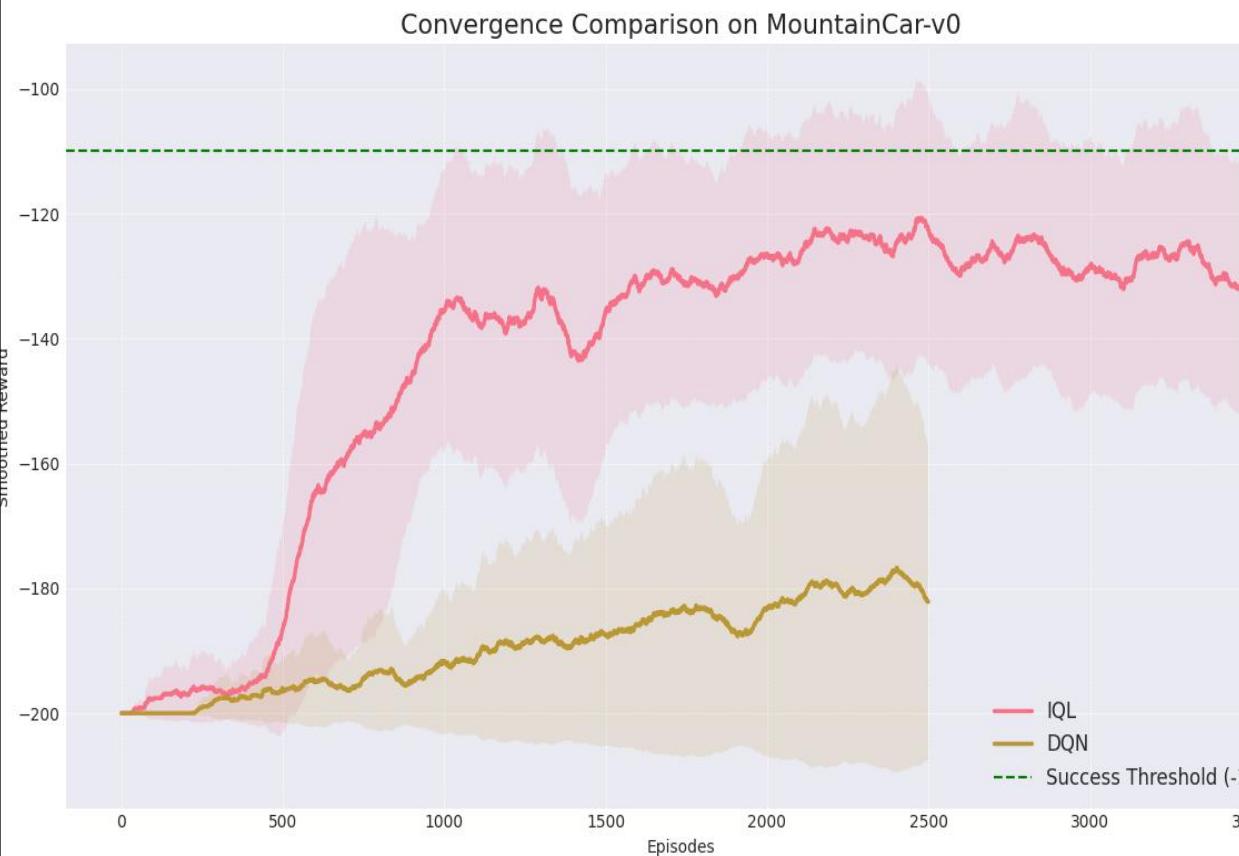
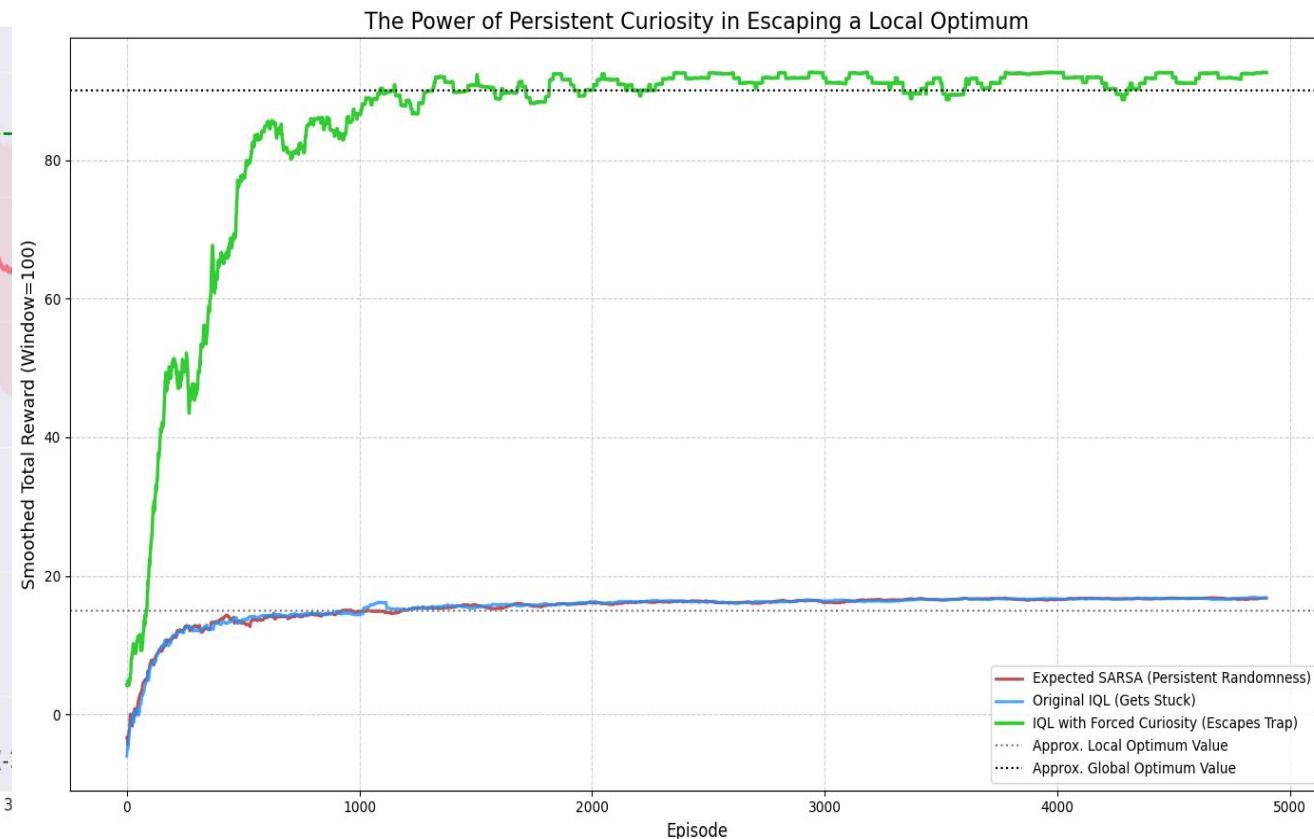
We experimented with variants of a stable layer analogous to a linear layer ( $W^T X$ ), drawing research direction from this quantum-complex phenomenon, validated on CIFAR-100, and extended toward more powerful neural net architecture.

| Dataset   | Architecture         | Standard MLP                       | New -Linear                        | $\Delta$ | Relative |
|-----------|----------------------|------------------------------------|------------------------------------|----------|----------|
| CIFAR-100 | Small [256]          | $27.59 \pm 0.21$                   | <b><math>29.77 \pm 0.34</math></b> | +2.19    | +7.9%    |
| CIFAR-100 | Medium [512-256]     | $26.95 \pm 0.26$                   | <b><math>34.08 \pm 0.14</math></b> | +7.14    | +26.5%   |
| CIFAR-100 | Large [1024-512-256] | $25.02 \pm 0.25$                   | <b><math>33.51 \pm 0.16</math></b> | +8.49    | +33.9%   |
| SVHN      | Small [256]          | $76.97 \pm 0.12$                   | <b><math>79.59 \pm 0.16</math></b> | +2.62    | +3.4%    |
| SVHN      | Medium [512-256]     | <b><math>80.49 \pm 0.26</math></b> | $80.29 \pm 0.17$                   | -0.20    | -0.2%    |
| SVHN      | Large [1024-512-256] | $82.54 \pm 0.11$                   | <b><math>86.10 \pm 0.25</math></b> | +3.56    | +4.3%    |

# Future Work / Work In Progress

Discovered an off-policy Auto-Explore & Exploit algorithm (**eliminating the epsilon-greedy method**) leveraging the Quantum Complex Number  $J(\theta)$  phenomenon; currently taking small steps toward shaping the future of RL in LLMs.

IQL is Middle Ground between UCB and Q-Learning:  
No future step lookups (as in UCB) &  
No random action selection (as in Q-Learning)



Thank You!

Exploring challenging AI opportunities in Canada/US

b.patel.physics@gmail.com