1. Motivation & Challenge

Dexterous robotic piano playing demands both high precision and expressive
artistry.

Key Challenges:
» High-dimensional Control: 20+ DoF per hand
» Precision vs. Expressiveness: Balancing accuracy with musical nuances
» Hand Coordination: Left (rhythm) vs. Right (melody)
» Reward Design: Traditional metrics miss artistic qualities

Solution: Diffusion-based policy with LLM semantic feedback for musical artistry.
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2. Data Preparation Pipeline
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Data Preparation

Enhanced 3D Trajectory Extraction:
» Scrape YouTube piano performances with paired MIDI files
» Extract 2D fingertips using MediaPipe
» Augment with DepthAnything for depth cues
» Fuse depth + 2D to obtain robust 3D fingertip trajectories

3. Key Contributions

Novel Technical Innovations:

» Diffusion-Based Policy: Conditional U-Net with FiLM for smooth action
generation via DDIM

» Composite Reward: Task accuracy + audio fidelity + style mimicry +
LLM semantic evaluation

» Hand-Specific Modulation: Left (stability) vs. Right (expressiveness)
dynamic rewards

» Residual IK: Combines IK solver with learned residuals for precise control

Enhanced Data: DepthAnything for robust 3D fingertip trajectory

extraction
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4. Framework Overview
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PANDORA uses a FiLM-conditioned U-Net to iteratively denoise noisy action sequences into smooth trajectories,
combines them with a residual IK head, and optimizes a composite reward that includes task accuracy, audio fidelity,
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style mimicry, and LLM-based semantic feedback.
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5. Diffusion-Based Policy Learning

DDIM Denoi ing:lS:cartin from xr ~ N(0, /), iteratively refine:
Xt—1 = / Q1 (Xt \_/%Ee(xht ) -+ \/1 — C_Vt—l@(xta t)
Architecture:

» U-Net with 4 blocks (64, 128, 256, 512 channels)
» FiLM layers inject state s and goal g;

» [ = 100 steps with cosine schedule
Training: Cosine LR (le—4 to 1le—6), EMA (0.9999), =1 hr on RTX 4090

6. Composite Reward Function

Multi-Component Design:

(1) Task Rtask — Wpress(]- — error) — Wfp - FP
- Xtar et ° Xrobot
(2) Audio Raudio — &
HXtargetH HXrobot
(3) Style Rstyle — _HTrobot — Thuman %

(4) LLM Oracle with Hand-Specific Modulation:

L R
Riim = Sum X e, Riim = Sum X 1R
where 77; emphasizes stability, nr emphasizes expressiveness.

Final Reward:
R = OéRtask =+ 6Raudio - fYRster T 5(RI_LLM + Rlﬁ_l\/l)
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7. Quantitative Results

13-song evaluation using Precision, Recall, and F1 metrics.

Method Precision Recall F1

PianoMime (Two-stage)  0.68 0.54 0.57
PianoMime (Residual) 0.70 0.56 0.58
PANDORA 0.78 0.60 0.68

+10% F1 improvement with ~3x faster training vs. baselines.

8. Ablation Study

Configuration Mean F1 Score

LLM + Residual (Full) 0.90
LLM - no Residual 0.73
no LLM + Residual 0.68
no LLM - no Residual 0.62

Insights:
» Residual policy is essential for precise, stable key strikes.
» LLM feedback is critical for expressive phrasing and dynamics.
» Their synergy yields the best accuracy and artistry.

9. Trajectory Analysis
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Conclusion & Resources

Summary: PANDORA bridges precision and artistry via diffusion, residual IK,
and LLM-guided rewards.

Future: Faster sampling, multi-instrument extension, real-world deployment.

Project: https://taco-group.github.io/PANDORA
Paper: https://arxiv.org/abs/2503.14545
Contact: yanjiag8120tamu.edu
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