

PANDORA: Diffusion Policy Learning for Dexterous Robotic Piano Playing

Yanjia Huang, Renjie Li, Zhengzhong Tu*

Department of Computer Science and Engineering, Texas A&M University

*Corresponding author: tzz@tamu.edu

1. Motivation & Challenge

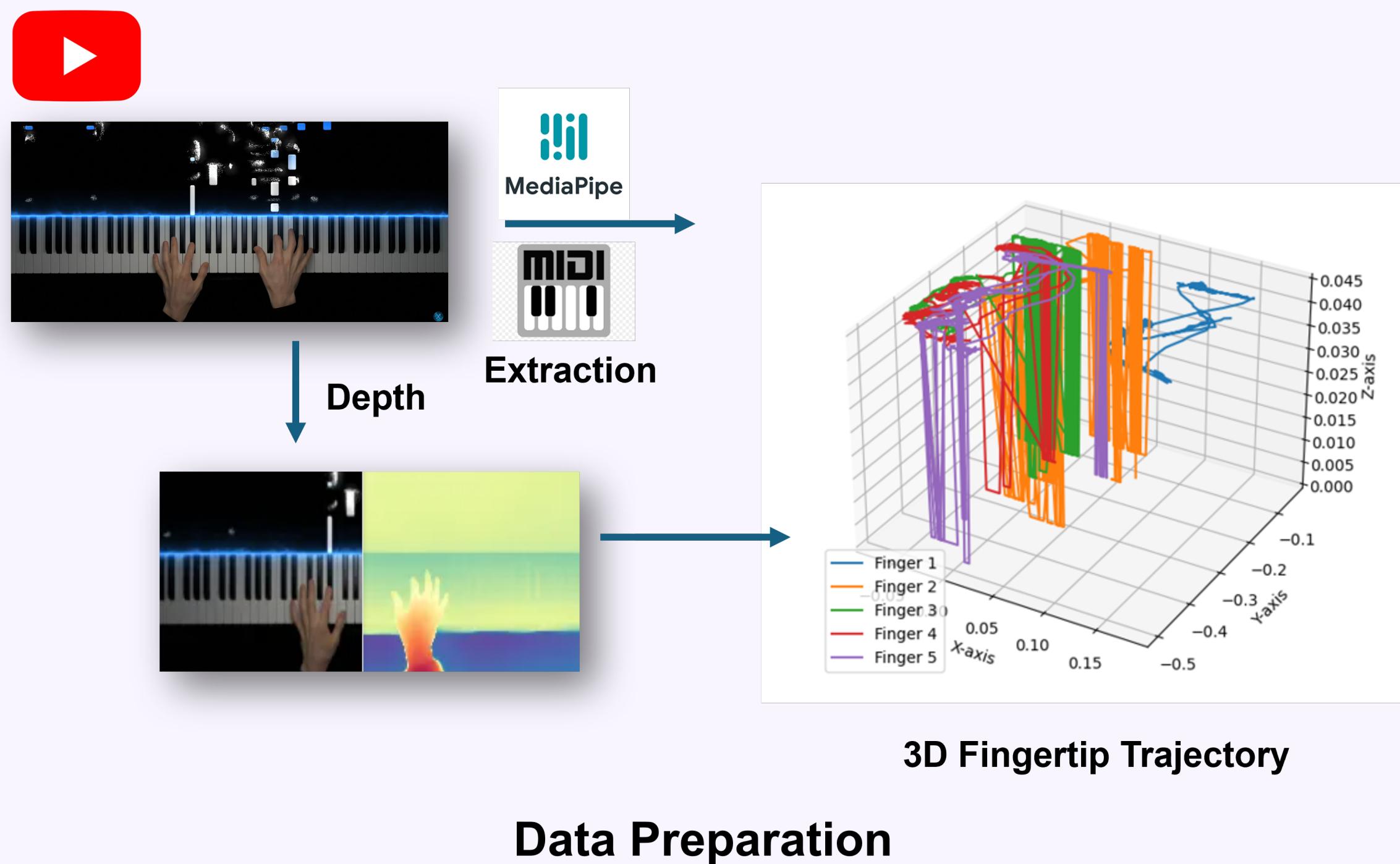
Dexterous robotic piano playing demands both **high precision** and **expressive artistry**.

Key Challenges:

- ▶ **High-dimensional Control:** 20+ DoF per hand
- ▶ **Precision vs. Expressiveness:** Balancing accuracy with musical nuances
- ▶ **Hand Coordination:** Left (rhythm) vs. Right (melody)
- ▶ **Reward Design:** Traditional metrics miss artistic qualities

Solution: Diffusion-based policy with LLM semantic feedback for musical artistry.

2. Data Preparation Pipeline



Enhanced 3D Trajectory Extraction:

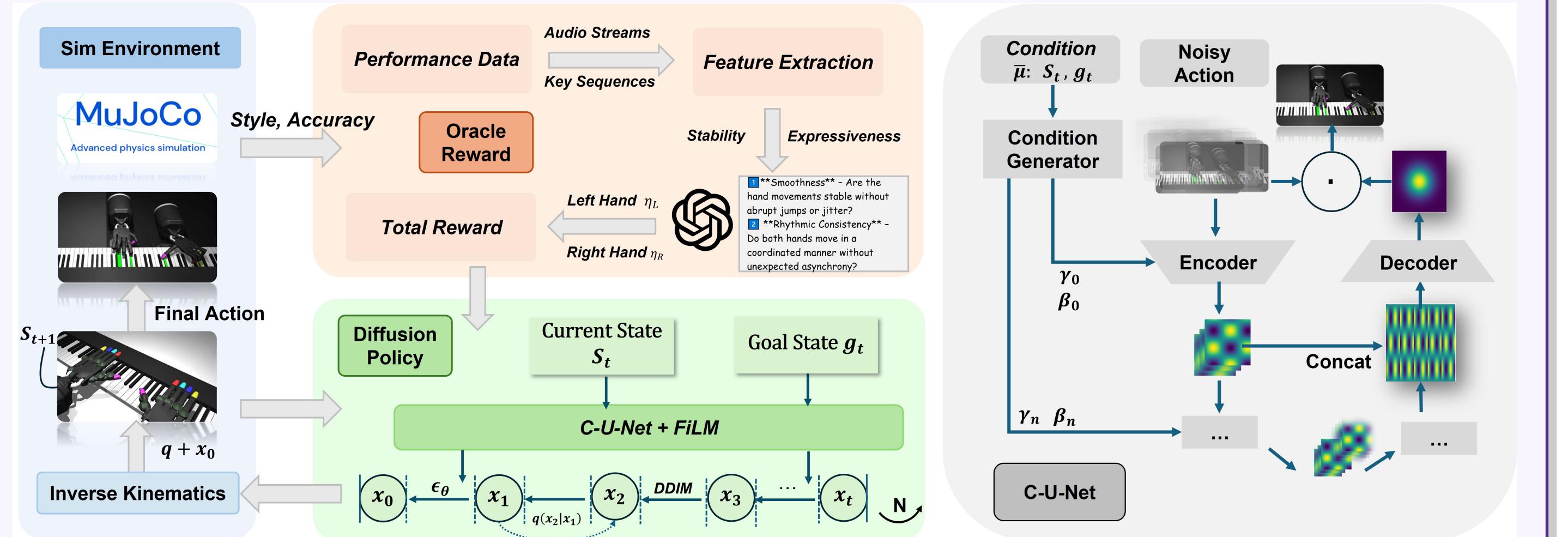
- ▶ Scrape YouTube piano performances with paired MIDI files
- ▶ Extract 2D fingertips using MediaPipe
- ▶ Augment with **DepthAnything** for depth cues
- ▶ Fuse depth + 2D to obtain robust 3D fingertip trajectories

3. Key Contributions

Novel Technical Innovations:

- ▶ **Diffusion-Based Policy:** Conditional U-Net with FiLM for smooth action generation via DDIM
- ▶ **Composite Reward:** Task accuracy + audio fidelity + style mimicry + LLM semantic evaluation
- ▶ **Hand-Specific Modulation:** Left (stability) vs. Right (expressiveness) dynamic rewards
- ▶ **Residual IK:** Combines IK solver with learned residuals for precise control
- ▶ **Enhanced Data:** DepthAnything for robust 3D fingertip trajectory extraction

4. Framework Overview



PANDORA uses a FiLM-conditioned U-Net to iteratively denoise noisy action sequences into smooth trajectories, combines them with a residual IK head, and optimizes a composite reward that includes task accuracy, audio fidelity, style mimicry, and LLM-based semantic feedback.

5. Diffusion-Based Policy Learning

DDIM Denoising: Starting from $x_T \sim \mathcal{N}(0, I)$, iteratively refine:

$$x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \left(\frac{x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(x_t, t)}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1}} \epsilon_\theta(x_t, t)$$

Architecture:

- ▶ U-Net with 4 blocks (64, 128, 256, 512 channels)
- ▶ FiLM layers inject state s and goal g_t
- ▶ $T = 100$ steps with cosine schedule

Training: Cosine LR (1e-4 to 1e-6), EMA (0.9999), ≈ 1 hr on RTX 4090

6. Composite Reward Function

Multi-Component Design:

$$(1) \text{ Task } R_{\text{task}} = w_{\text{press}}(1 - \text{error}) - w_{\text{fp}} \cdot \text{FP}$$

$$(2) \text{ Audio } R_{\text{audio}} = \frac{X_{\text{target}} \cdot X_{\text{robot}}}{\|X_{\text{target}}\| \|X_{\text{robot}}\|}$$

$$(3) \text{ Style } R_{\text{style}} = -\|\tau_{\text{robot}} - \tau_{\text{human}}\|_2^2$$

(4) LLM Oracle with Hand-Specific Modulation:

$$R_{\text{LLM}}^L = S_{\text{LLM}} \times \eta_L, \quad R_{\text{LLM}}^R = S_{\text{LLM}} \times \eta_R$$

where η_L emphasizes stability, η_R emphasizes expressiveness.

Final Reward:

$$R = \alpha R_{\text{task}} + \beta R_{\text{audio}} + \gamma R_{\text{style}} + \delta (R_{\text{LLM}}^L + R_{\text{LLM}}^R)$$

7. Quantitative Results

13-song evaluation using Precision, Recall, and F1 metrics.

Method	Precision	Recall	F1
PianoMime (Two-stage)	0.68	0.54	0.57
PianoMime (Residual)	0.70	0.56	0.58
PANDORA	0.78	0.60	0.68

+10% F1 improvement with $\sim 3\times$ faster training vs. baselines.

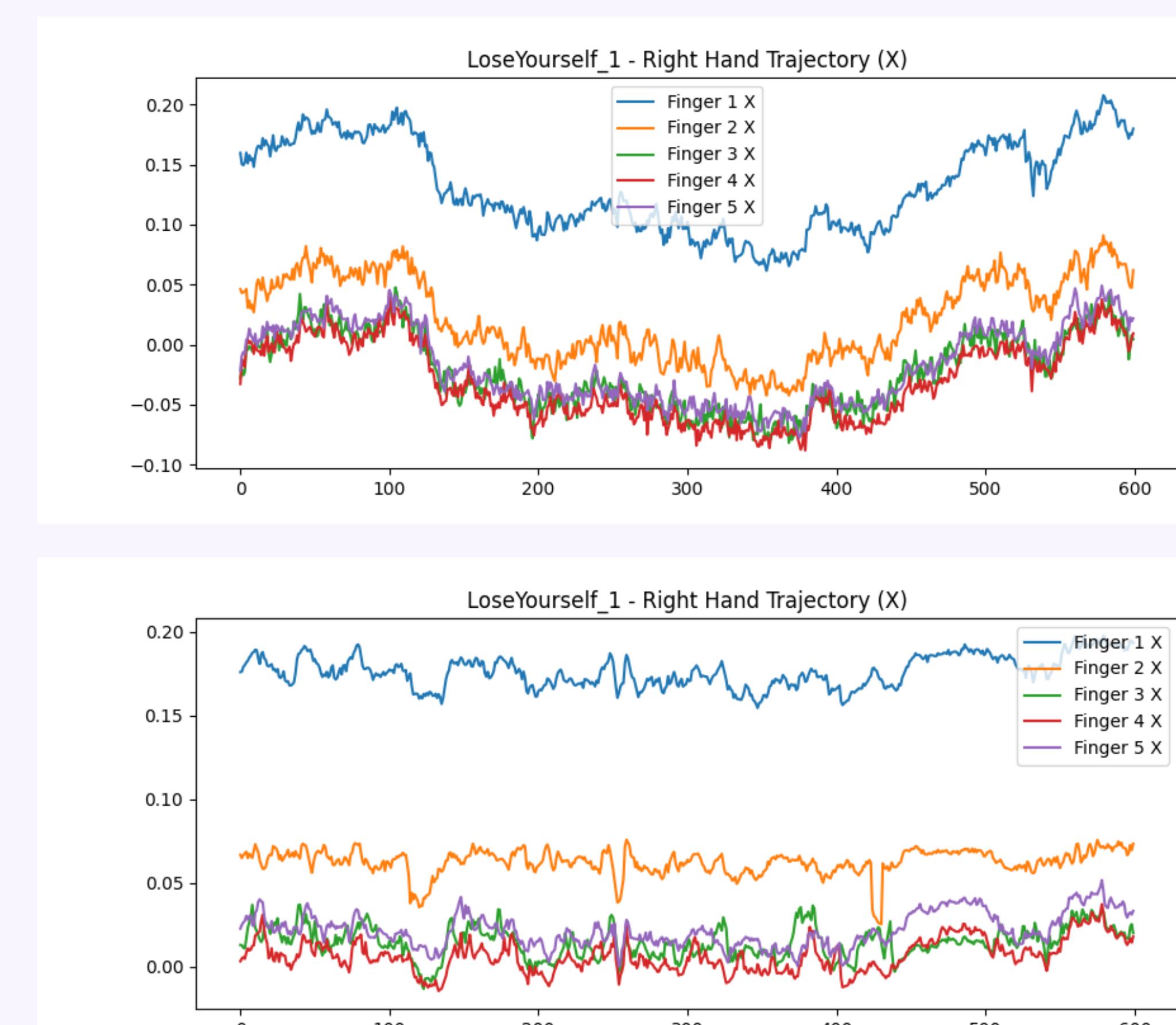
8. Ablation Study

Configuration	Mean F1 Score
LLM + Residual (Full)	0.90
LLM - no Residual	0.73
no LLM + Residual	0.68
no LLM - no Residual	0.62

Insights:

- ▶ **Residual policy** is essential for precise, stable key strikes.
- ▶ **LLM feedback** is critical for expressive phrasing and dynamics.
- ▶ Their **synergy** yields the best accuracy and artistry.

9. Trajectory Analysis



Conclusion & Resources

Summary: PANDORA bridges precision and artistry via diffusion, residual IK, and LLM-guided rewards.

Future: Faster sampling, multi-instrument extension, real-world deployment.

Project: <https://taco-group.github.io/PANDORA>

Paper: <https://arxiv.org/abs/2503.14545>

Contact: yanjia0812@tamu.edu

