

Sim-to-Real Contact-Rich Pivoting via Optimization-Guided RL with Vision and Touch

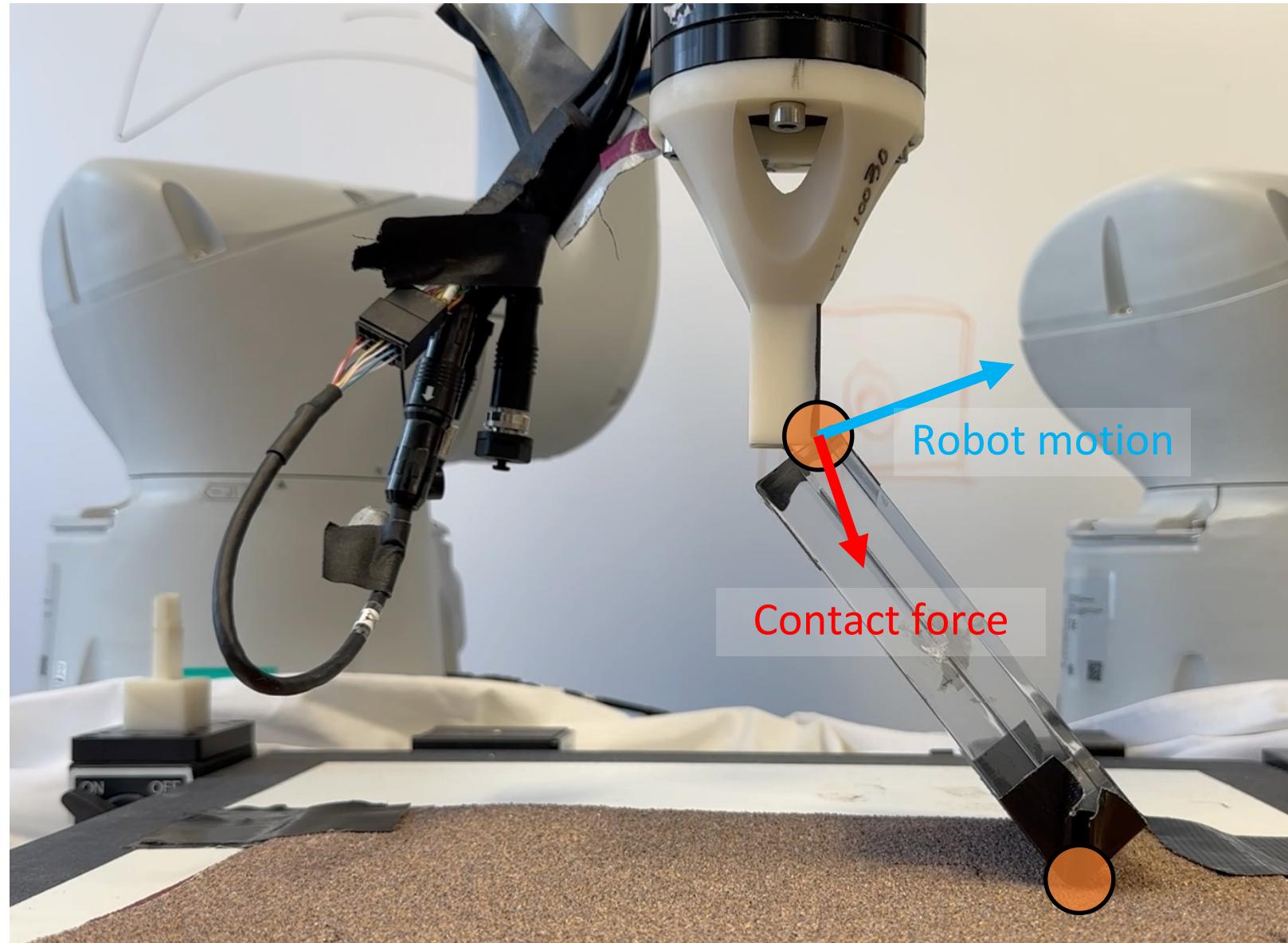
Yuki Shirai, Kei Ota, Devesh Jha, Diego Romero

MITSUBISHI
ELECTRIC

MITSUBISHI ELECTRIC
RESEARCH LABORATORIES

TL;DR: Contact-Aware Demos + RL => Sample Efficient Training & Zero-Shot Sim2Real Transfer for Non-Prehensile Manipulation

Motivation



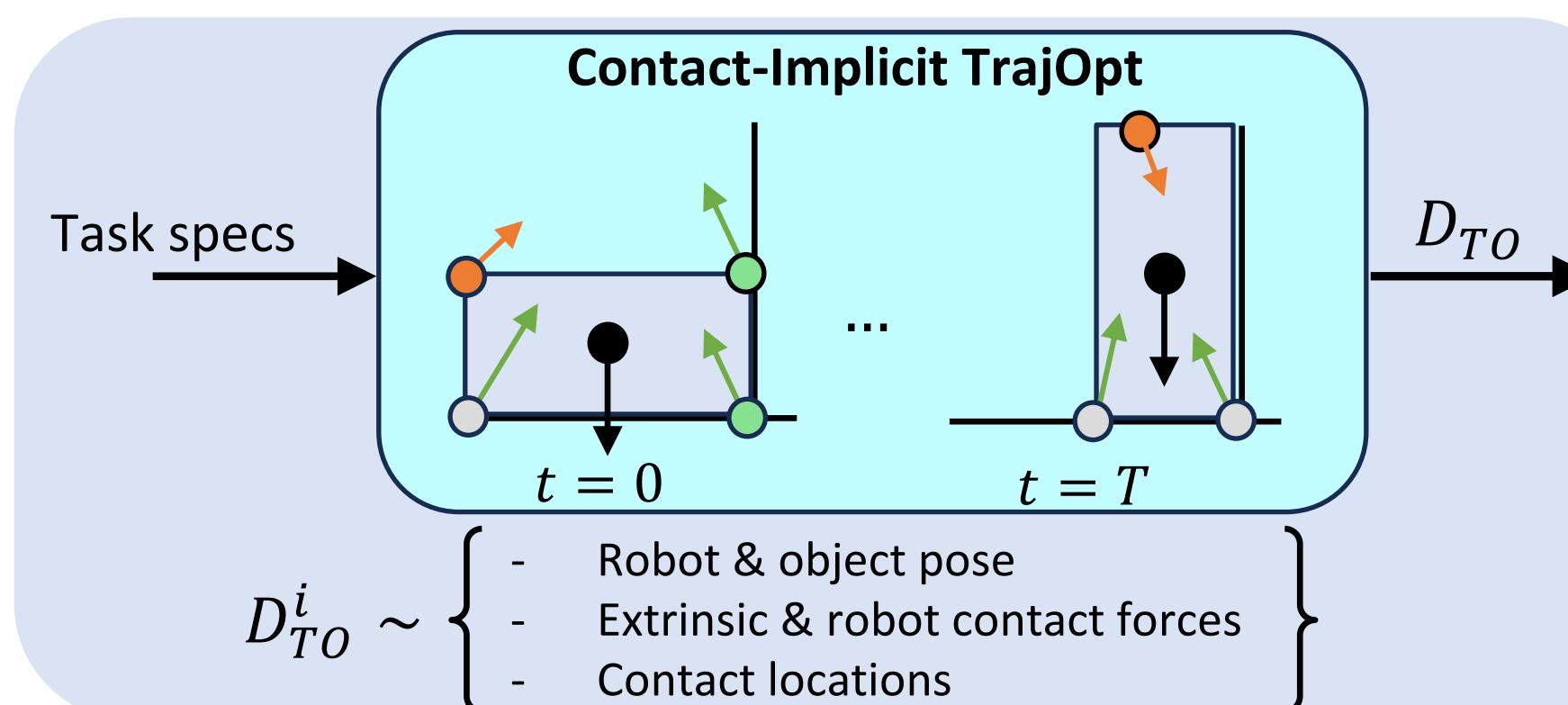
- Designing closed-loop controller for manipulation is difficult
- MPC: Requires privileged information (object pose, size, mass)
- RL: Lots of data
- Can we do better?

Contributions:

1. Framework for learning closed-loop non-prehensile manipulation by leveraging demonstrations generated by Contact TrajOpt
2. Sim2Real transfer using temporal history of visual and force sensing

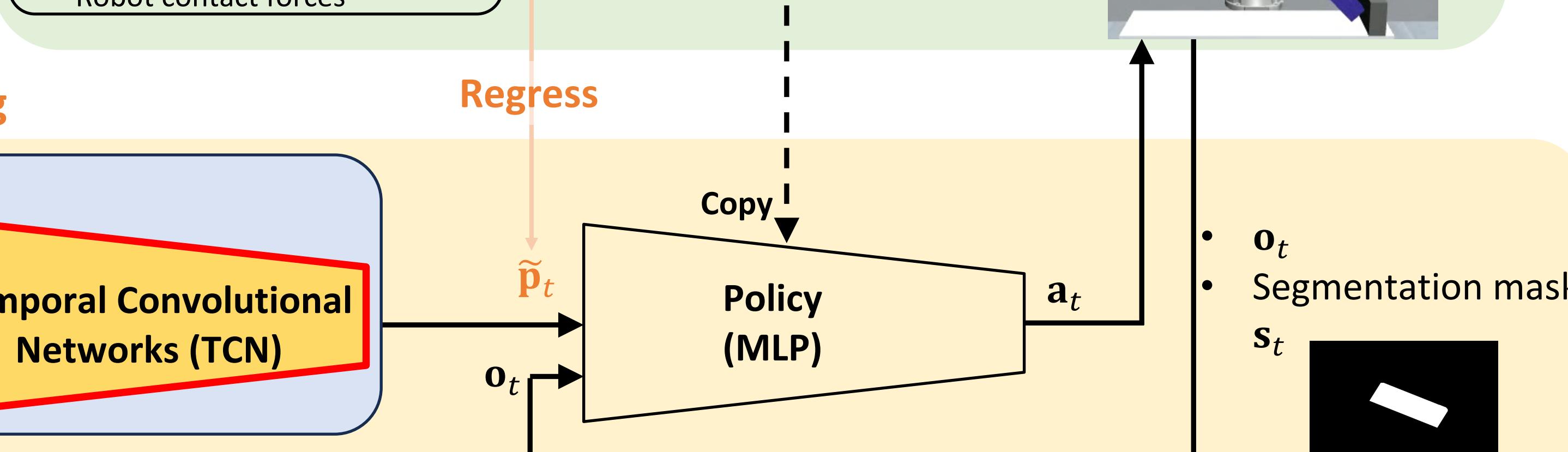
Method

Step 1: Data collection

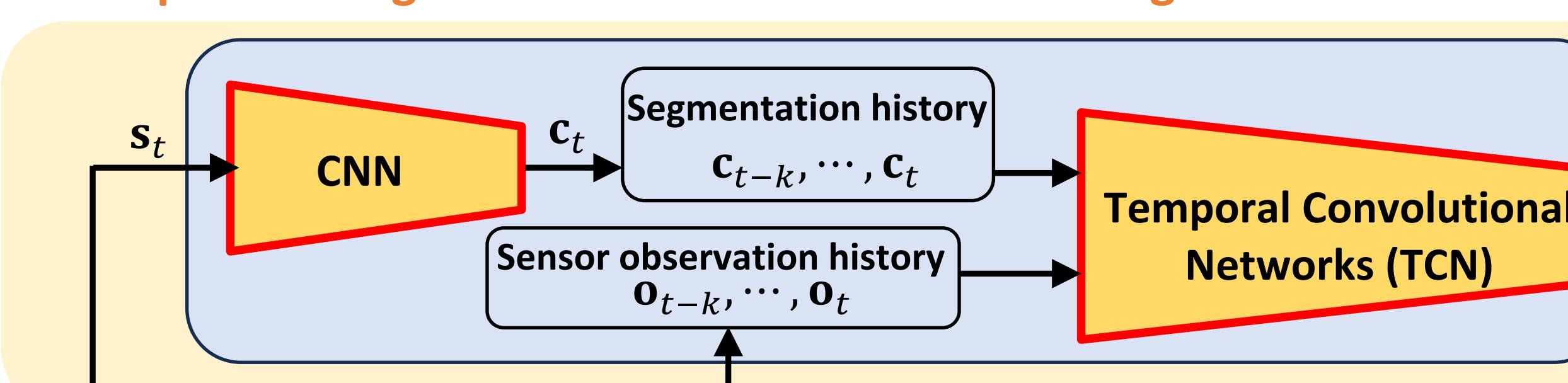


Step 2: Policy Training

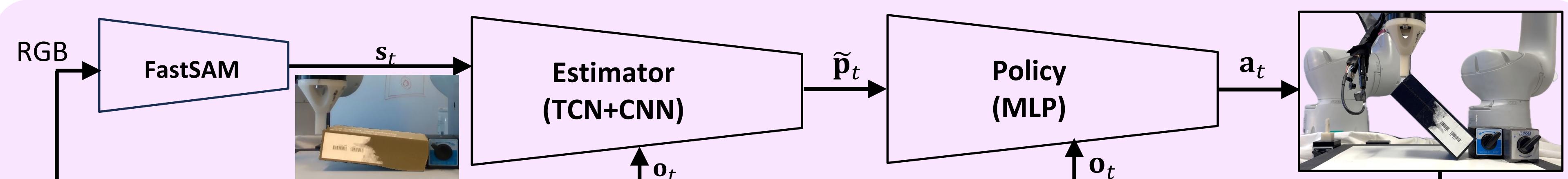
- Privileged information
 - Object pose
 - Object & env. properties
 - Extrinsic contact signal
- Sensor observations
 - Robot position
 - Robot contact signal
 - Robot contact forces



Step 3: Privileged Information Estimator Training



Step 4: Deployment in Real-World for Zero-Shot Sim2Real

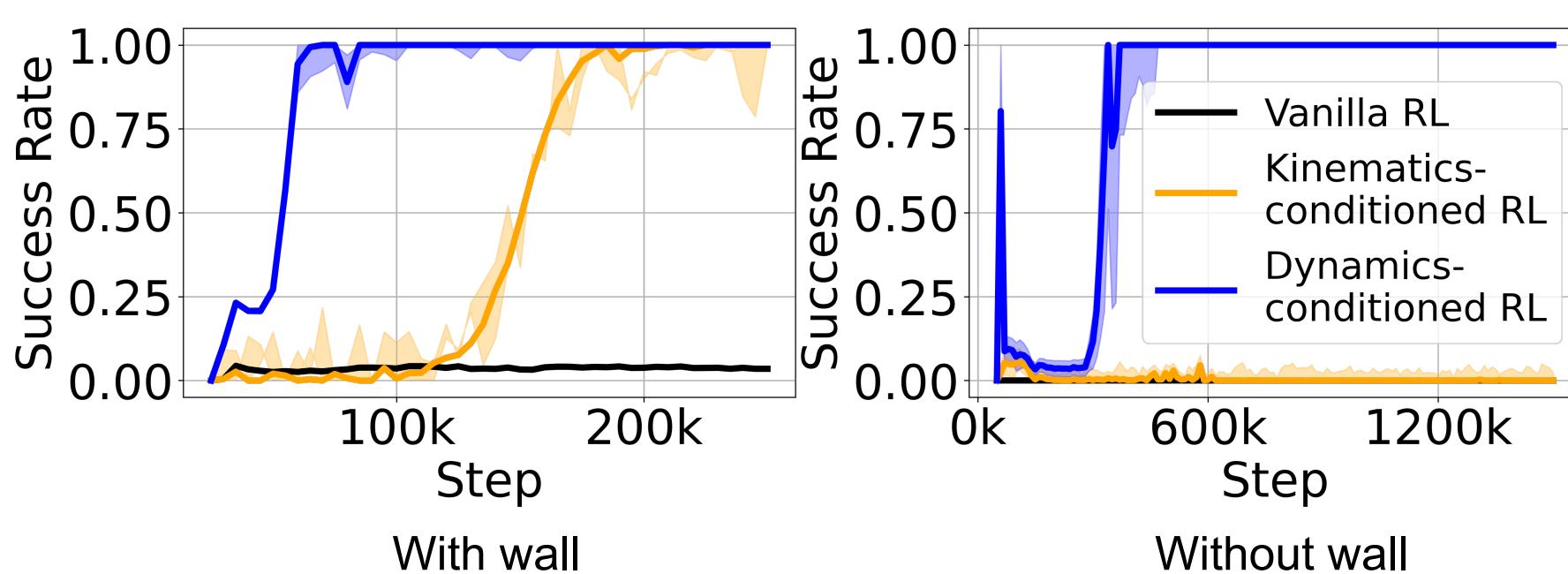


Assumptions.

- 2D
- Quasistatic
- Rigid objects

Result

Do Demonstrations by TrajOpt Facilitate Learning?



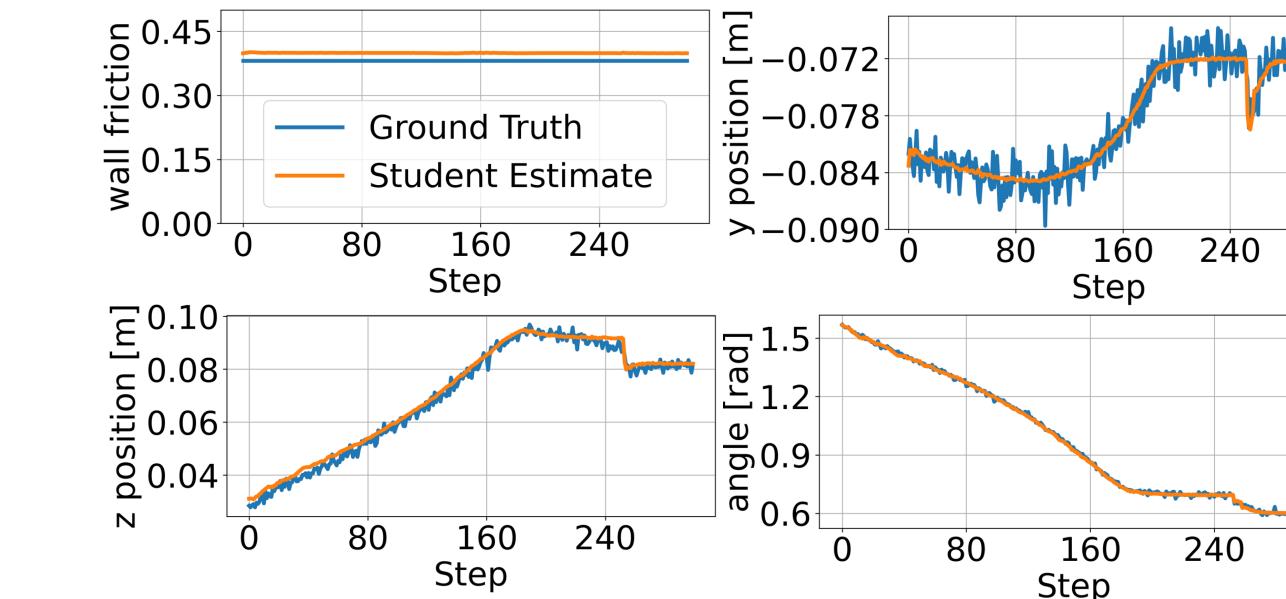
- Learning curves for different RL training runs over 3 seeds.
- 1. RL considering dynamics-conditioned demonstrations shows the best performance because of tight feasible action space

Comparison against Baselines

Task	MPC	BC	Dynamics-conditioned RL
With wall	98 / 100	2 / 100	100 / 100
Without wall	81 / 100	0 / 100	100 / 100
Mass	Kinematics-conditioned RL	Dynamics-conditioned RL	
50g	2 / 5	5 / 5	
110g	5 / 5	5 / 5	
300g	0 / 5	5 / 5	

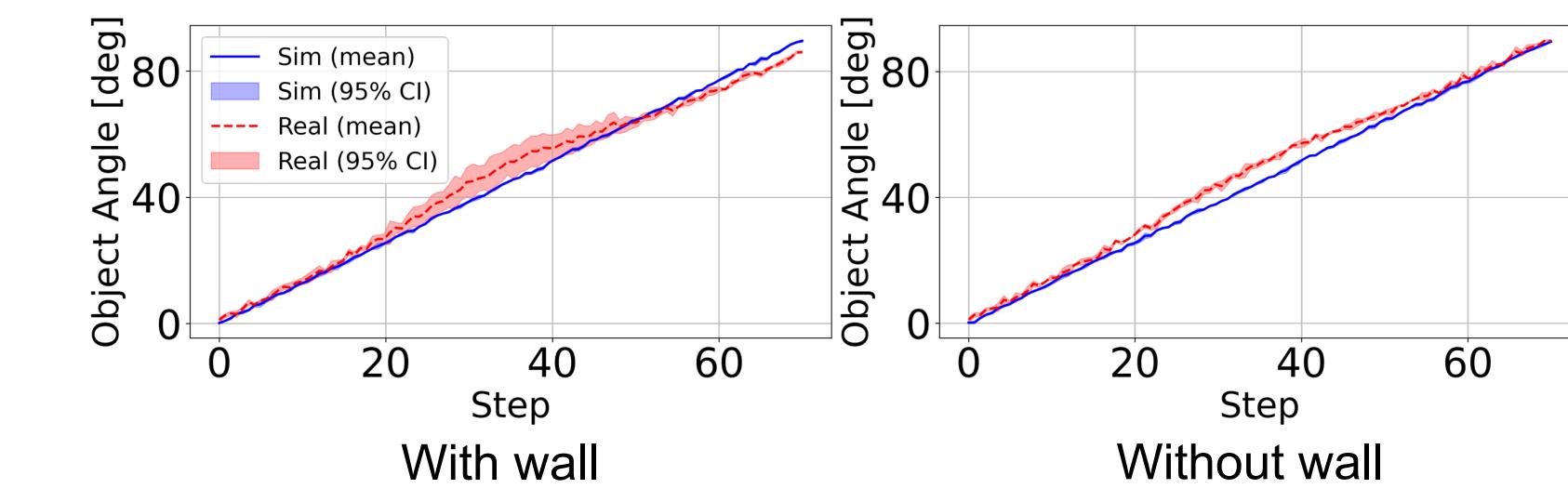
- Number of successful attempts.
- 1. Our RL shows the highest success rate
- 2. Ours is more robust than RL only considering kinematics demos

Estimator Prediction Performance



- Deploy the trained policy in MuJoCo
- 1. Our estimator successfully predicts the privileged information with reasonable accuracy.

Sim2Real Gap



- Trajectory of object orientation by deploying the policy on simulation and hardware over 3 trials
- 1. Larger sim2real gap for the pivoting with external wall. This is because the object induces the sliding contacts, which are challenging to model in MuJoCo.