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TL:DR: Contact-Aware Demos + RL => Sample Efficient Training & Zero-Shot Sim2Real Transfer for Non-Prehensile Manipulation

Motivation

Robot mQ ﬂ

« Designing closed-loop controller for manipulation is difficult

 MPC: Requires privileged information (object pose, size, mass)
 RL: Lots of data
-> Can we do better?

Contributions:
1. Framework for learning closed-loop non-prehensile manipulation

Method

Step 1: Data collection
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Step 2: Policy Training
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Step 4: Deployment in Real-World for Zero-Shot Sim2Real

Assumptions.

RGB . = . « 2D
by leveraging demonstrations generated by Contract TrajOpt FastSAM Estimator . P: > Policy . Quasistatic
2. Sim2Real transfer using temporal history of visual and force (TCN+CNN) . Rigid objects
sensing
Result

Do Demonstrations by TrajOpt Facilitate Learning?
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1.

Learning curves for different RL training runs over 3 seeds.
RL considering dynamics-conditioned demonstrations shows the
best performance because of tight feasible action space

Comparison against Baselines

Task MPC BC Dynamics-conditioned RL
With wall 98 /100 2/ 100 100 / 100
Without wall 81 /100 0/ 100 100 / 100

Mass  Kinematics-conditioned R  Dynamics-conditioned RL

50 g 275 5/5
110g 5/5 5/5
300 g 0/5 5/5

* Number of successful attempts.
1. Our RL shows the highest success rate

1.

2. Ours is more robust than RL only considering kinematics demos

Estimator Prediction Performance Sim2Real Gap
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Step Step « Trajectory of object orientation by deploying the policy on simulation and
hardware over 3 trials

Deploy the trained policy in MuJoCo 1. Larger sim2real gap for the pivoting with external wall. This is because

Our estimator successfully predicts the privileged the object induces the sliding contacts, which are challenging to model

information with reasonable accuracy. in MuJoCo.



