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Background
Decentralized training avoids global synchronization and can

greatly reduce communication overhead, but is often believed

to generalize worse than centralized algorithms. From convex

problems, the common intuition is that consensus errors —

the differences between local models and global average —

are harmful noise that should be minimized.

Decentralized SGD
The update of DSGD:
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However, the consensus errors vanish with diminishing step

sizes, which voids the potential sharpness regularization.
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Contributions
Insight (alignment structure) Consensus errors tend to

align with the dominant Hessian subspace.

Insight (curvature regularizer) Consensus errors can be

viewed as a curvature regularizer instead of noises.

Algorithm (DSGD-AC) A simple yet effective algorithm

that intentionally maintains non-vanishing consensus errors,

exploit the regularization, and improves generalization.

DSGD-AC: Decentralized SGD
with adaptive consensus

Require: Dataset (D), the number of workers (n), the number

of epoch (E), the number of batches per epoch (T ), intial-

ization (x(0)), and a hyperparameter p (p ≥ 2) .
Ensure: Deployed model x̄ = 1
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6: end for

Insightful observations
Correlation between Hessian and covariance matrix of

stochastic gradients

There exists a non-trivial level of correlation between the

covariance matrix C of the gradient noise and Hessian H

(though decreasing).

Hessian-alignment structure in consensus errors

Left: Loss at the average center is significantly smaller than

the losses at the local models.

Right: Losses along the directions of consensus errors exhibit

significantly higher curvature than along random directions.

Consensus errors as curvature regularizer
With i.i.d. data distributions and Σ(t) as the consensus error

covariance, we can have the sum of the local objectives as
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Thus, DSGD-AC can be interpreted as minimizing the central

loss F (x(t)) plus a Hessian-weighted disagreement penalty.

Numerical results

Algorithm Test Acc. (%) ↑ Test Loss ↓ Mean Top-1 Eigenvalue ↓ Computation ↓
DSGD 96.07 ± 0.13 0.176 ± 0.005 22.4360 ± 3.9916 1x

SGD 95.96 ± 0.14 0.182 ± 0.004 16.8485 ± 0.3251 1x

DSGD-AC 96.77 ± 0.11 0.128 ± 0.003 8.9693 ± 0.3514 1x

AD-SAM [1] 96.37 ± 0.11 0.168 ± 0.002 24.9059 ± 1.6212 1x

SAM [2] 97.33 ± 0.04 0.100 ± 0.002 0.3523 ± 0.0312 2x
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