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The DARPA Triage Challenge (DTC)

Context: Mass Casualty Incidents (MCls) overwhelm
human responders. The DTC seeks to develop

autonomous systems capable of providing situational
awareness and triage in the first minutes of an event.

System Architecture & Hardware
Platform: Field-deployable robotic unit (ROS2 based).

Methodology: Expert-Driven Design

Knowledge Elicitation: Instead of training on datasets,
which are scarce for MCls, we constructed the network
structure and Conditional Probability Tables (CPTs) via

a structured process:

Sensor Suite: High-resolution RGB camera, thermal
camera, LIDAR, radar, microphone.

Inference Engine: SMILE (Structural Modeling,
Inference, and Learning Engine) operating in real-time
(<1ms/update).

Expert Elicitation: Iterative sessions with
emergency medicine specialists.

Problem: Existing autonomous perception models are .

brittle. In the chaotic, noisy environment, standalone

computer vision often fails to make reliable predictions.

 Medical Logic: Encoding rules like “Amputations
often imply Severe Hemorrhage”. Integration: Each physiological estimator operates as

an independent ROS2 node publishing to the central

Bayesian Network.

Our solution: We propose a Bayesian network (BN)
that integrates fragmented sensor data into a coherent
clinical assessment to build a reasoning layer that
survives data loss.
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Influence Graph established in Expert Elicitation process. Every node represents CPT whose weights were set manually.

Conclusions

We already have tools that allow us to easily create
resource-less baselines for decision-making systems, with
virtually no integration into the existing architecture. In our
case, this enabled us to quadruple the total number of
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points gained without loss in accuracy of the system.
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