

Beyond Prompts: Preserving Semantics in Diffusion-based Communication

2025.12.06

Wonjung Kim¹, Nakyoung Lee¹, Sangwoo Hong², Jungwoo Lee¹

Seoul National University¹, Konkuk University²

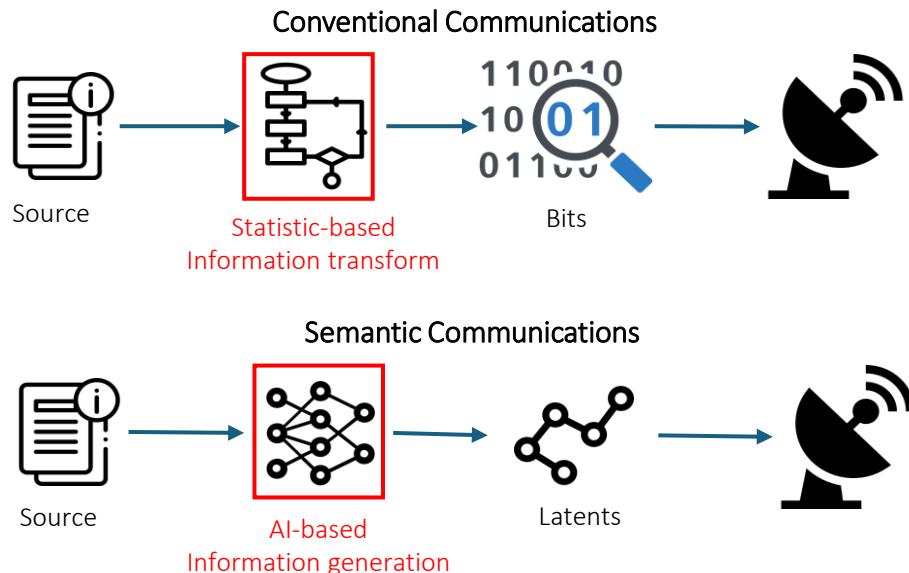
SEOUL
NATIONAL
UNIVERSITY



Paradigm Shift: Semantic Communications

- Goal & Metrics

- Goal
 - Shift from Bit-level accuracy to Semantic-level fidelity
- Metrics
 - PSNR/LPIPS (Visual), BLEU (Text) instead of BER

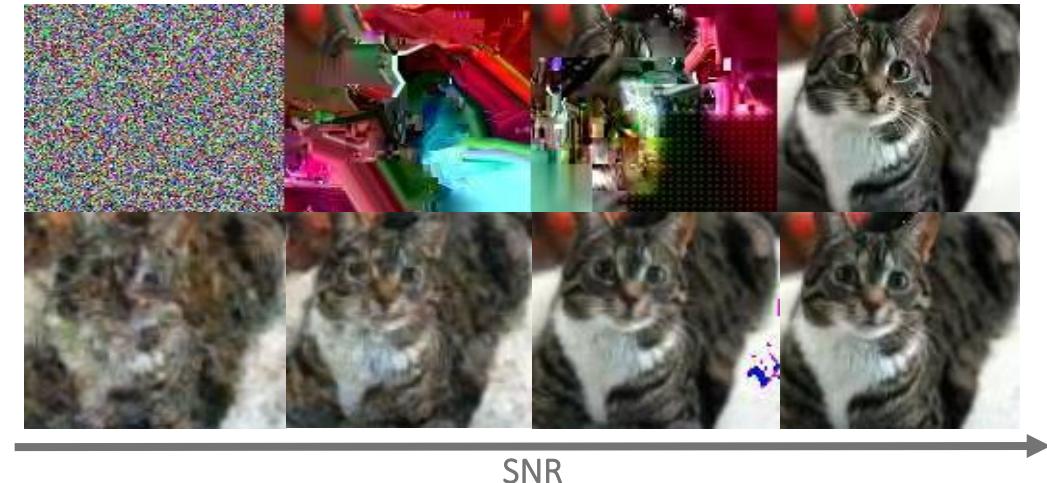


- Benefit: Robustness

- Continuity: Latent space allows smooth interpolation
- Results: Mitigating the Cliff-effect (Graceful degradation)

- Benefit: Efficiency

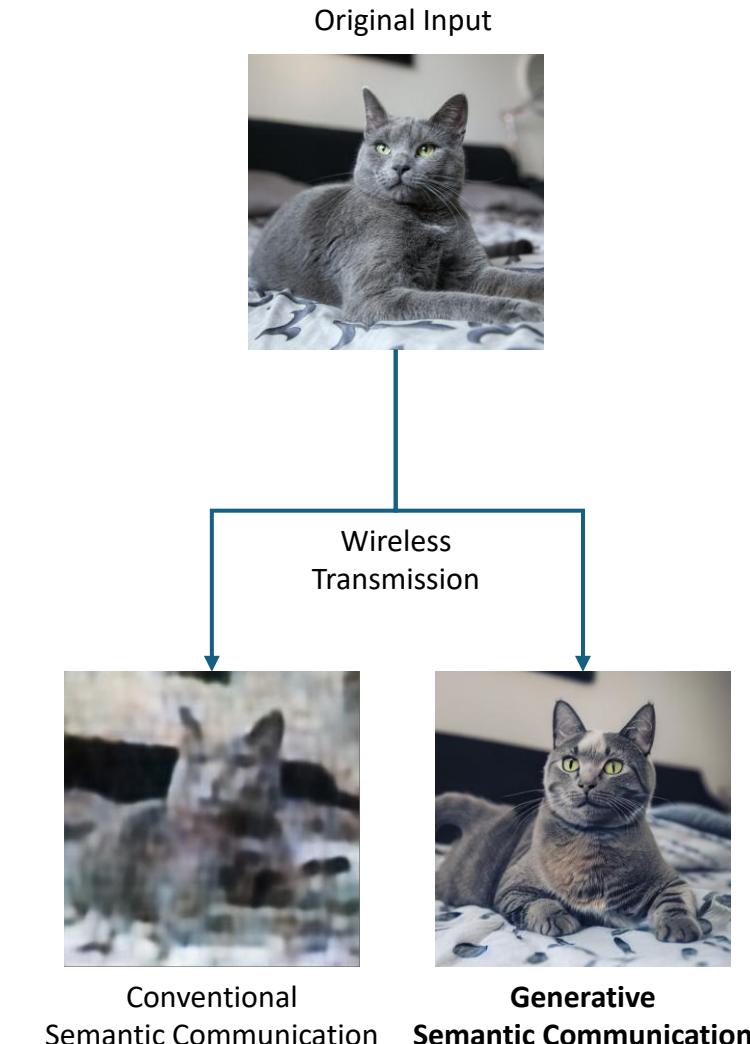
- High compression: Transmitting only essential features
- Results: Significantly reduced bandwidth consumption



< [Top] Separate Source-Channel Coding (BPG+LDPC) >
 < [Bottom] Joint Source-Channel Coding (DeepJSCC) >

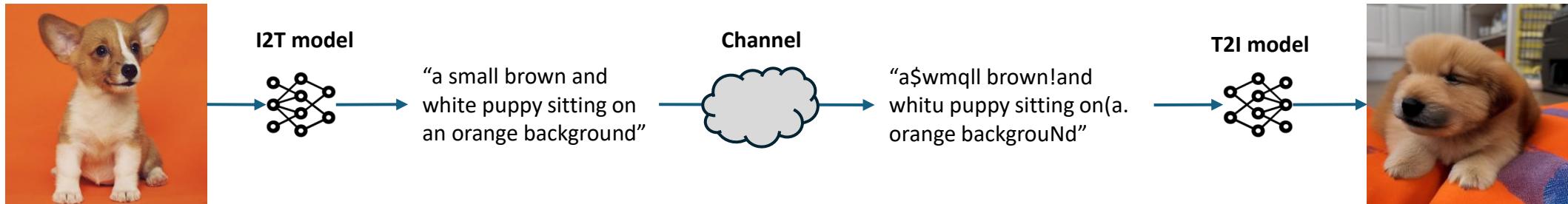
Generative Semantic Communications

- Limitation of Conventional Semantic Communication
 - Approach: End-to-end mapping from pixels to channel symbols.
 - Key Issue
 - Optimization complexity in high-dimensional space
 - **Texture Loss**: Struggles to preserve fine-grained visual details under limited bandwidth
 - Result: High robustness but blurry texture
- The Paradigm Shift: Generative Models
 - Solution: Utilizing **Diffusion Models** as a universal decoder
 - Advantage: Shifts focus from “Pixel-wise Accuracy” to “**Perceptual Fidelity**”
- Emerging Research Directions
 - Generative Post-processing
 - Enhancing DeepJSCC outputs with generative post-processing
 - Modality Transformation (Language-oriented)
 - Reformulates image transmission as a **Text-based task** using VLMs



Vision-Language Transformation in Semantic Communications

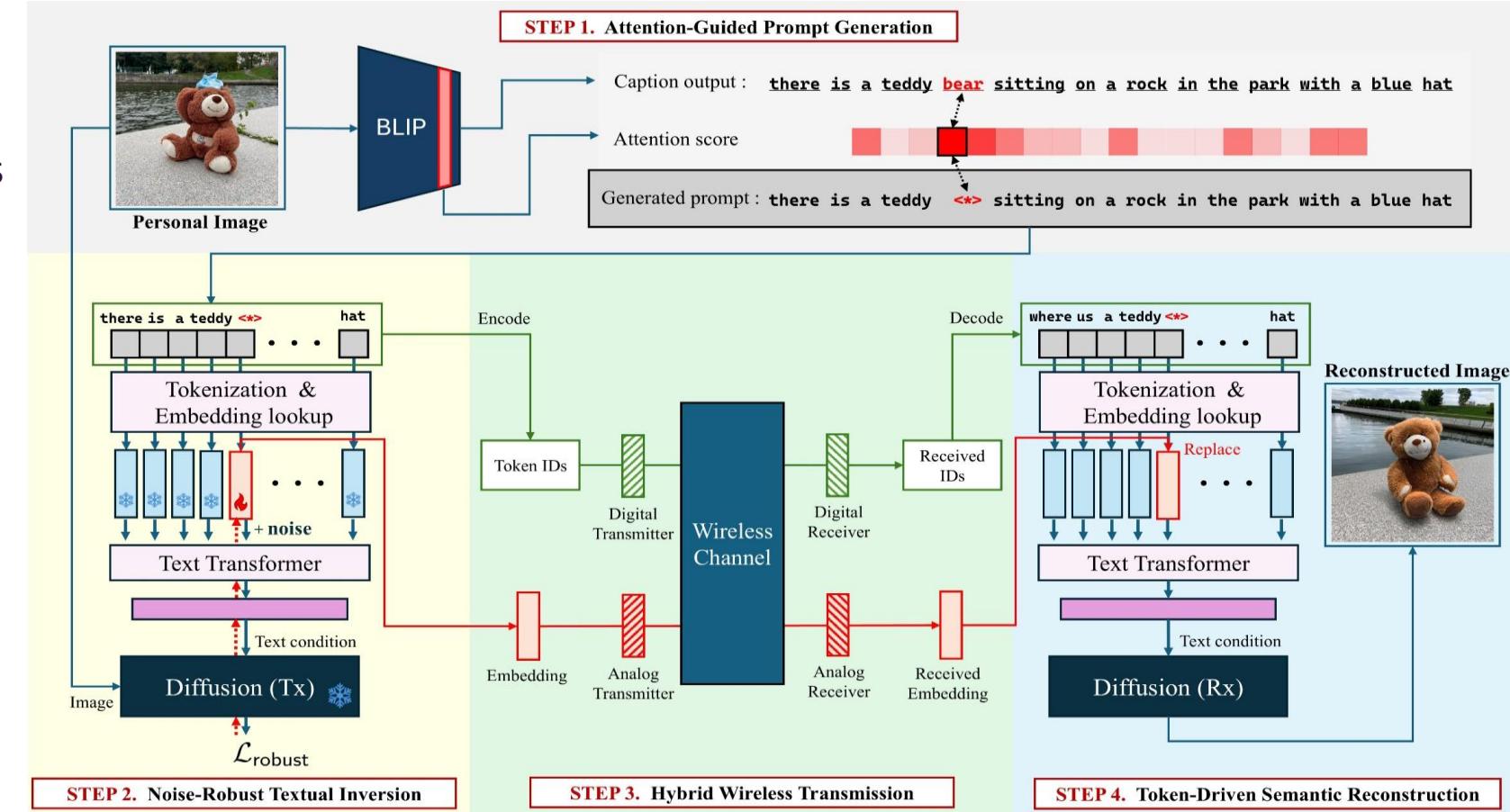
- Image-to-Text (I2T) for Transmitter
 - Role: Semantic extraction
 - Mechanism
 - Generates natural language captions from input images
 - Key Model: BLIP
 - Limitation
 - Loss of fine-grained visual structures
- Text-to-Image (T2I) for Receiver
 - Role: Generative reconstruction
 - Mechanism
 - Generates realistic images conditioned on received text prompt
 - Key Model: Stable Diffusion, DALLE-2, etc
 - Limitation
 - Generative uncertainty when prompt information is insufficient



Problem: "Semantic Ambiguity"

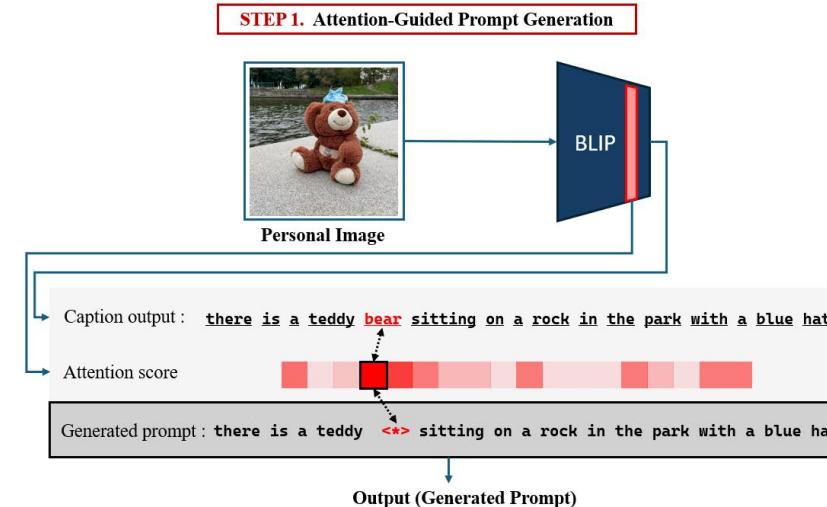
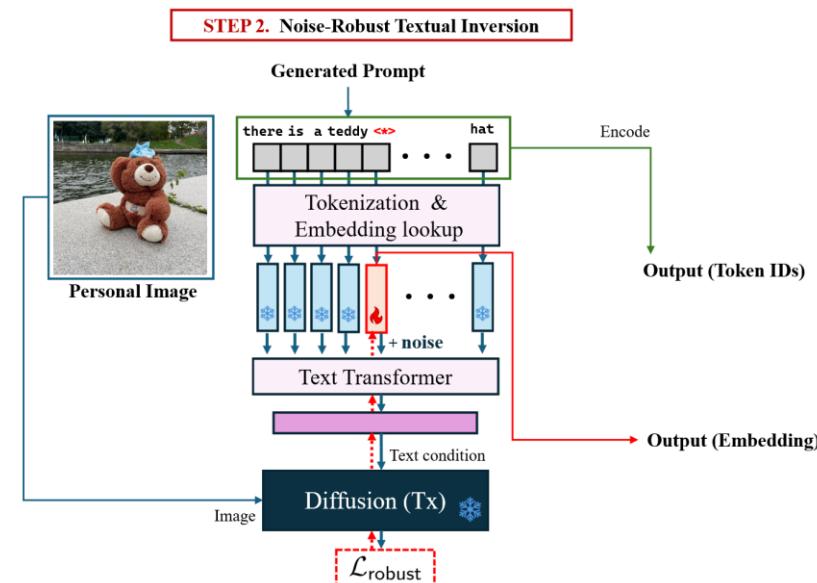
Text prompts abstract away too much detail, leading to inconsistent reconstructions
-> Need a method to preserve details while maintaining bandwidth efficiency

- Core Concept
 - Optimize and transmit **learnable token <*>** that captures specific visual features
- Architecture Workflow
 - Transmitter (Optimization)
 - Extract text prompt
 - Learn the token via textual inversion
 - Receiver (Generation)
 - Generate image conditioned on received text and embedding
- System Model
 - AWGN, SISO channel
 - Deploy same version of pre-trained Diffusion model



TISC Procedure @ Transmitter

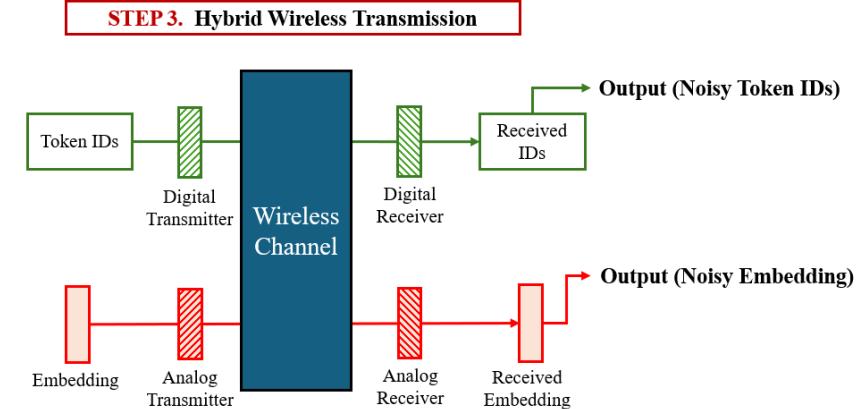
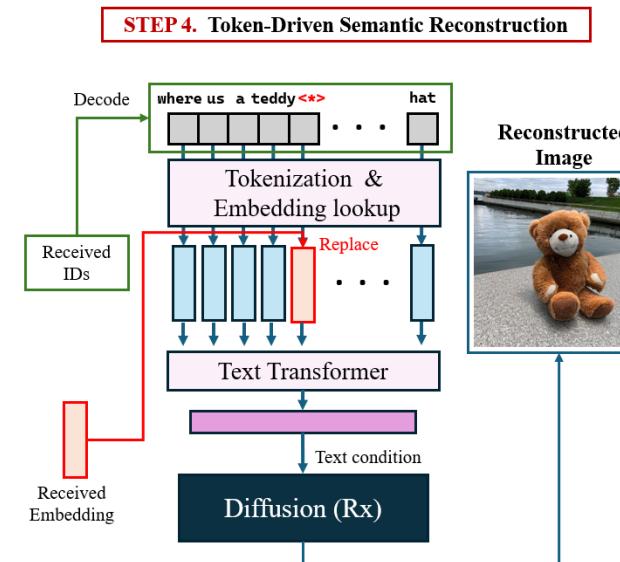
- Step 1: Attention-Guided Prompt Generation
 - BLIP-captioning: Generate base caption using BLIP
 - Attention-guided token selection
 - Identify the token with the highest attention score
 - Replace the token with a learnable placeholder <*>
- Step 2: Noise-Robust Textual Inversion
 - Textual Inversion (TI)
 - Optimize only the embedding vector $v_{<*>}$ for <*> while freezing the diffusion model
 - $\mathcal{L}_{origin} = \mathbb{E}_{x,c,\epsilon,t} [\|\epsilon - \epsilon_\theta(x_t, t, c(v_{<*>}))\|_2^2]$
 - Enhancing “Noise-robustness” in TI
 - Adds noise δ to the embedding during training
 - $\mathcal{L}_{robust} = \mathbb{E}_{x,c,\epsilon,t,\delta} [\|\epsilon - \epsilon_\theta(x_t, t, c(v_{<*>} + \delta))\|_2^2]$
(where $\delta \sim \mathcal{N}(0, \sigma^2 I)$ simulates AWGN)



TISC Procedure @ Receiver

- Step 3: Hybrid Wireless Transmission
 - Digital Path (for text caption)
 - Token IDs \rightarrow M-QAM \rightarrow Digital Tx
 - $y_t = x_t + n_t$
 - Analog Path (for token embedding v_{*})
 - \hat{v} (Normalized v_{*}) \rightarrow Analog Tx
 - $y_a = \hat{v} + n_a$

- Step 4: Token-Driven Semantic Reconstruction
 - Token Injection
 - Replaces placeholder with received noisy embedding y_a
 - Final Synthesis
 - Generates image conditioned on the hybrid prompt



Simulation Results: Comparison with Baselines (1/2)

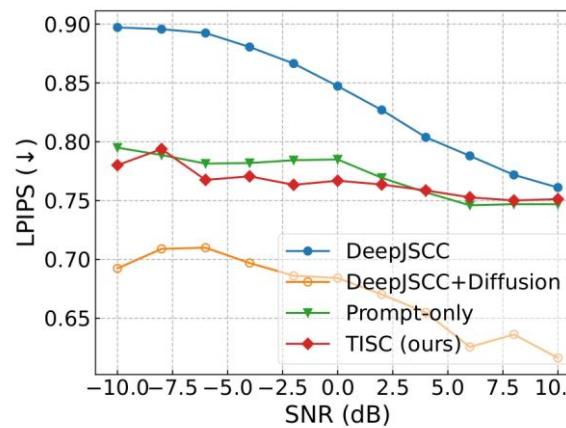
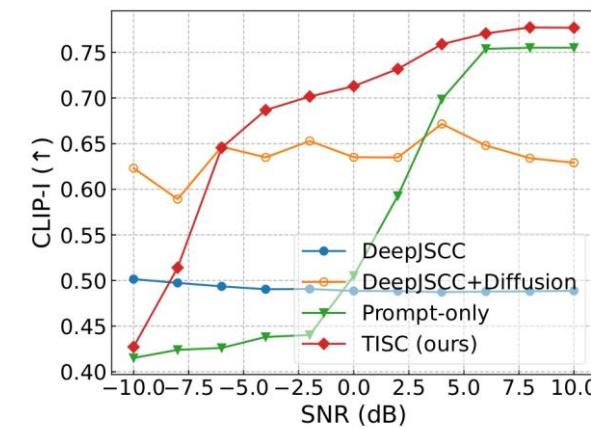
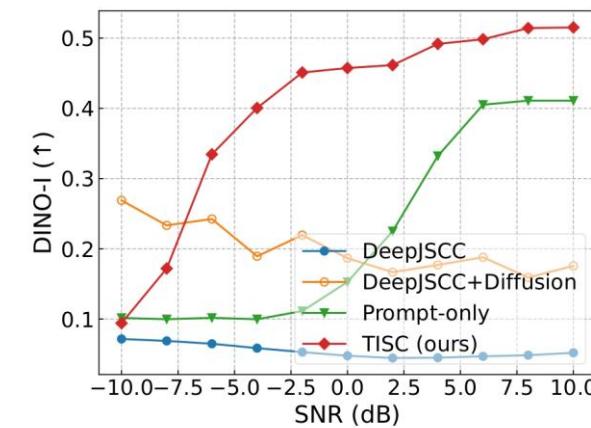
- Baselines

Baseline	Architecture	Key Mechanism	Characteristic
DeepJSCC	CNN Autoencoder	Pixel-to-symbol mapping	Mitigates Cliff effect
DeepJSCC +Diffusion	CNN+Diffusion	Diffusion-based denoising	High perceptual quality
Prompt-only	VLM (Language-Driven)	Vision-Language transform	Caption-based reconstruction

- Metrics

Metric	Method	Key Focus	Used Backbone
LPIPS	Multi-layer CNN	Structural fidelity	VGG-16
CLIP-I	CLIP Image embeddings	Global semantic agreement	CLIP ViT-B/32
DINO-I	Self-supervised DINO features	Object semantic agreement	DINO ViT-S/16

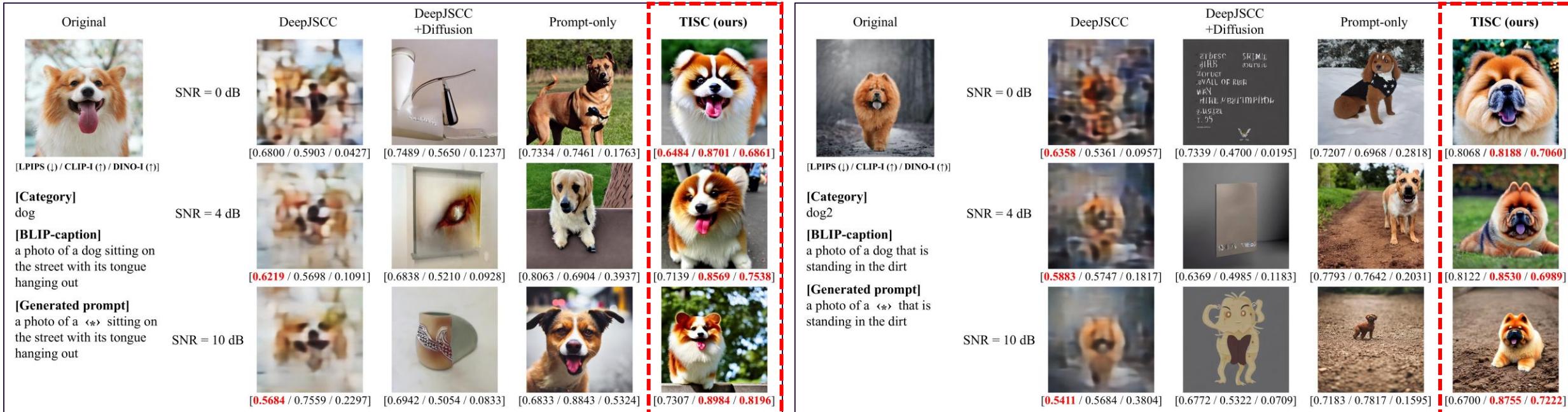
- Quantitative Comparison



Simulation Results: Comparison with Baselines (2/2)

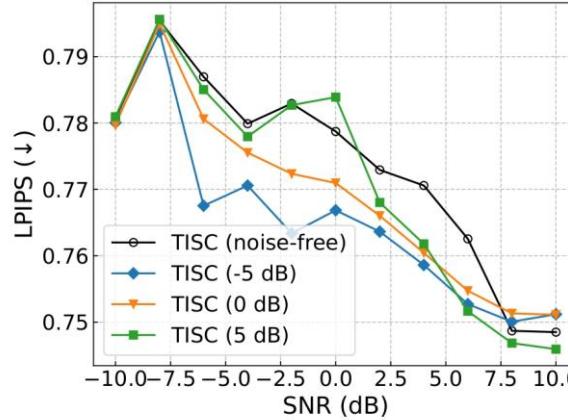
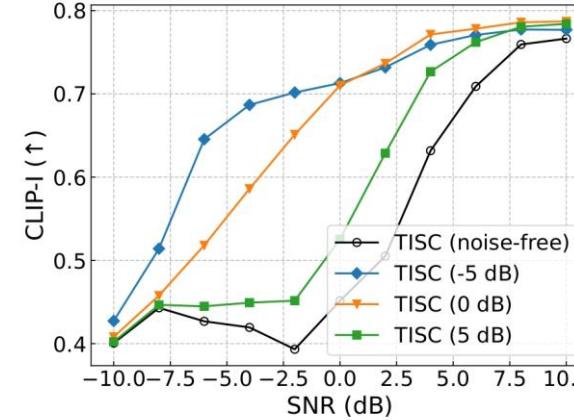
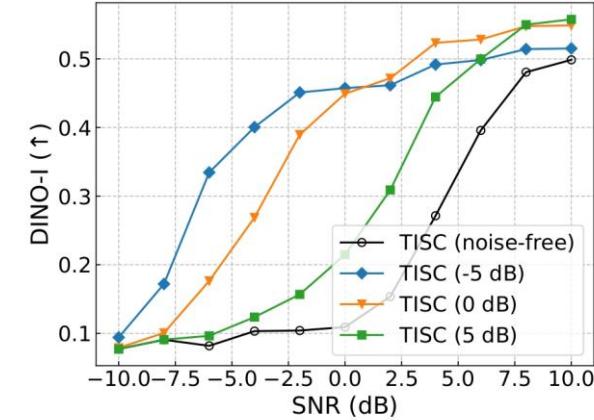
- Visual Quality Comparison

- Baseline Failure
 - Conventional schemes yield blurry outputs, while prompt-only methods lose identity consistency.
- TISC Advantage
 - Successfully retains **user-specific features** (e.g., color distribution, facial structure) even at **SNR = 0 dB**

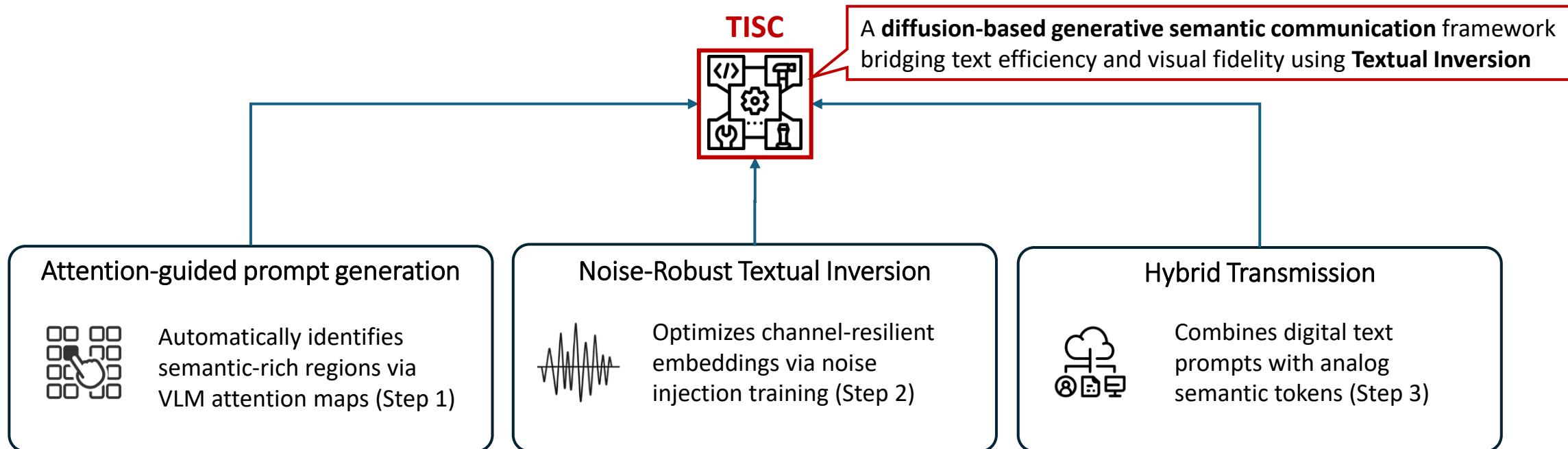


Simulation Results: Ablation for Noise Parameter

- Numerical Results
 - Experimental Setup
 - Models trained under varying noise levels (-5, 0, 5 dB vs. Noise-free) to analyze robustness
 - Result
 - The model trained at -5 dB demonstrates the strongest generalization across all SNR regimes
 - Trade-off
 - Higher noise injection significantly improves low-SNR resilience but incurs a marginal performance drop in clean channels



Conclusion



Achievement

Robustness: Outperforms DeepJSCC and Prompt-only baselines, especially in Low-SNR regimes
Fidelity: Successfully reconstructs user-specific features missing in text-only approaches.

Thank you for your attention

Wonjung Kim: dnjswnd116@snu.ac.kr

Nakyung Lee: leena@cml.snu.ac.kr

Sangwoo Hong: swhong06@konkuk.ac.kr

Jungwoo Lee: junglee@snu.ac.kr

SEOUL
NATIONAL
UNIVERSITY

