
ProRefine: Inference-Time Prompt
Refinement with Textual Feedback

Introduction
Problem: Agentic workflows involving LLMs critically depend on high-quality
prompts.
• Poorly designed prompts lead to sub-optimal performance and error

propagation
• Reliance on continuous fine-tuning or exclusively using the largest, most

expensive models is often computationally prohibitive

Solution: We introduce ProRefine, an innovative, task-agnostic method for
inference-time prompt optimization.
• ProRefine dynamically refines prompts for multi-step reasoning tasks
• Uses an agentic loop of LLMs that generate and utilize textual feedback
• No additional training or ground-truth labels required

Deepak Pandita1, 2, Tharindu Cyril Weerasooriya1, Ankit Parag Shah1, Isabelle
Diana May-Xin Ng1, 3, Christopher M. Homan2, Wei Wei1

1Center for Advanced AI, Accenture, 2Rochester Institute of Technology,
3University of California, Berkeley
deepak@mail.rit.edu, t.weerasooriya@accenture.com

Overview of the ProRefine system, illustrating the iterative process of prompt optimization using feedback from LLMs. In
each iteration, LLMtask extends its output by k tokens, enabling step-by-step feedback from LLMoptimizer to progressively
refine the prompt.

Updated
Prompt (p*)

Query (q)

Output (o)

Feedback (f)

Initial Prompt
(p)

1st iteration, k
tokens: thirty- Answer is incomplete.

Prompt should clarify: use
digits only, no symbols.

Answer concisely.

2nd iteration,
2*k tokens:

35

Prompt update: Answer
using only digits, no
words or symbols.

taskLLM

Illustrations by Nur Miftah

optimizerLLM

feedback
LLM

(S
T
A
R
T
)

What is 5
multiplied by 7?

(END)

Agent Role Function Benefit

LLMtask The primary model generating
the response. Extends its
output by k tokens in each
iteration.

Enables step-by-step
reasoning and provides
intermediate steps for critique.

LLMfeedback Generates textual feedback
for the output of LLMtask.

Provides fine-grained,
localized feedback directly on
the reasoning chain.

LLMoptimizer Refines and updates the initial
prompt for LLMtask based on
the feedback.

Allows for dynamic correction
before errors propagate
through the reasoning chain.

ProRefine extends the Chain-of-Thought (CoT) prompting approach by
introducing a refinement loop with three specialized LLM agents.

ProRefine
Results

Test Accuracy with 95% confidence intervals across five benchmark datasets and models. * and ** denote statistically significant
improvements over one or two baseline methods, respectively. Results in bold indicate the highest accuracy for a dataset-method
combination. † demonstrates the upper bound potential of the optimization loop and the impact of verifier quality. Llama-3.1-70B-
instruct is employed for feedback generation, prompt optimization, and evaluation.

References

Conclusion and Future Work
ProRefine offers a practical solution for multi-step agentic workflows by
providing an on-demand "expert intervention" via the feedback loop.
• Robustness: The inference-time optimization process prevents errors from

compounding
• Versatility: Suitable for black-box LLMs with API only access
• Interpretability: The textual feedback steps generated by LLMfeedback offer

insights into the reasoning correction process

Future Work
• Extend to tool-using agents
• Adaptive stopping criteria

• Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic
Word Problems (Ling et al., ACL 2017)

• Are NLP Models really able to Solve Simple Math Word Problems? (Patel et al.,
NAACL 2021)

• Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models (Srivastava et al., TMLR 2023)

• Chain-of-thought prompting elicits reasoning in large language models (Wei et al.,
NeurIPS 2022)

• Textgrad: Automatic" differentiation" via text (Yuksekgonul et al., arXiv preprint 2024)

Key Findings
• ProRefine achieved significant performance gains ranging from 3 to 37

percentage points over CoT baselines
• Performance improvements scale with model size
• ProRefine allows smaller LLMs to approach the zero-shot performance of

their larger counterparts
• High-quality verifier is crucial for improving task performance at test-timeLLMtask: To determine the number of vegetables

LLMfeedback: The output is incomplete, it should directly answer the
question. Add the total count of the vegetables: "There are 12

vegetables."

LLMOptimizer: You will answer a reasoning question. Think step by step. Ensure the
answer directly answers the question and provides a final numerical value. If necessary,

include the total count of the vegetables in the answer. The last line of your response
should be of the following format: \'Answer: $VALUE\' where VALUE is a numerical value.

Include the total count of the vegetables in the format "There are X vegetables."

LLMtask: To find the total number of vegetables, we need to count
each type of vegetable

LLMfeedback: Incorrect assumption. The task is to find the total number
of individual vegetables, not just count the types. Instead, focus on

counting the quantities of each vegetable and summing them up.

LLMOptimizer: You will answer a reasoning question. Think step by step. To find the total
count of individual vegetables, count the quantities of each vegetable separately and
sum them up. Then, provide the final numerical value. The answer should include the

total count of individual vegetables, not just the types. Include the total count in the
format "There are X individual vegetables." The last line of your response should be of

the following format: \'Answer: $VALUE\' where VALUE is a numerical value.

LLMtask: To find the total count of individual vegetables, we need to
count the quantities of each vegetable separately and sum them
up.\n\n- Let

LLMfeedback: Incorrect calculation, the output should directly provide
the total count of vegetables instead of explaining the process. It

should correctly sum up the quantities of each vegetable, which is
1+1+2+1+1+2+2+3=13.

LLMOptimizer: You will answer a reasoning question. To find the total count of individual
vegetables, you are given the quantities of each vegetable. Directly provide the total

count of individual vegetables by summing up the quantities. Do not explain the
process. Ensure the answer includes the total count in the format "There are X
individual vegetables." The last line of your response should be of the following

format: \'Answer: $VALUE\' where VALUE is a numerical value representing the total
count of individual vegetables.

LLMtask: There are 1 + 1 + 2 + 1 + 1 + 2 + 2 + 3 = 13 individual
vegetables.\n\nAnswer: 13

LLMfeedback: the output is correct

LLMtask: To determine the number of vegetables, we need to identify the vegetables in the
given list. \n\n- Lettuce is a vegetable.\n- Celery is a vegetable.\n- Cauliflower is a
vegetable.\n- Carrot is a vegetable.\n- Onion is a vegetable.\n- Potato is a vegetable.\n-
Cabbage is a vegetable.\n\nNow, let's count the number of vegetables: \n1. Lettuce\n2.
Celery\n3. Cauliflower\n4. Carrot\n5. Onion\n6. Potato\n7. Cabbage\n\nThere are 7
vegetables in total.\n\nAnswer: 7

Initial Prompt: You will answer a reasoning question. Think step by
step. The last line of your response should be of the following format:
'Answer: $VALUE' where VALUE is a numerical value.

Query: I have a lettuce head, a stalk of celery, two yams, a
cauliflower, a carrot, two onions, two potatoes, and three cabbages.
How many vegetables do I have?

(Answer: 13)

 P
ro

R
ef

in
e

In
pu

t
(e

xc
ep

t f
or

 A
ns

w
er

)
B

as
el

in
e

re
sp

on
se

(n
o

P
ro

R
ef

in
e)

✅

