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Introduction Method

* . Intelligent behavior hinges on predictive maps of Function-approximated SR through Contrastive RL I'

future states, aka successor representations (SRs). Given state set S, learn low-d encoc?lers hg, gg:S — R,
« & Issue: tabular SRs don't generalize to unseen states, d < |§]. We define a distance function

whereas humans do do(s, ") = ho(s)"go(s"), and score fo(s,s") = —dq(s,s").
* - Questions:

1. Do low-rank SRs support more efficient planning + The forward InfoNCE loss is

oroader generalization? . . exp fo(S¢, Spir)
2. If so, do they also capture human-like behavior bias? forward = _ 05 Y e, €xpfo(se, x)|”

Our results suggest Yes to both! where IV; has one positive, m — 1 negatives for anchor s;.

Function-approximated SR generalizes & shortens paths
A
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. Fig 1. We train on random length-5 trajectories in a grid world (1A) and found that function-approximated SR (FA-SR)
generalizes to unseen states in evaluation. Among the start-goal pairs that tabular SRs could solve, FA-SA produces shorter paths.

Function-approximated SR is human-like in graphical tasks
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. Fig 2. In high-d graphical tasks %, subjects are shown random walks from an unknown graph type (2A, B). Humans take longer to react
to random = lattice > modular graphs (2C, adapted from [2]), captured by FA-SR (2D). FA-SR also captures other human behaviors (2E, F).

Conclusion + Next Steps

~A-SR supports generalization to novel states. . Directly fit human reaction time data [2] with FA-SR.
-A-SR plans shorter trajectories than full-rank SR. . Extend grid world to richer, more naturalistic environments.
FA-SR shapes human-like behavior bias qualitatively. . Involve neural data, e.g., hippocampal-entorhinal representations.
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