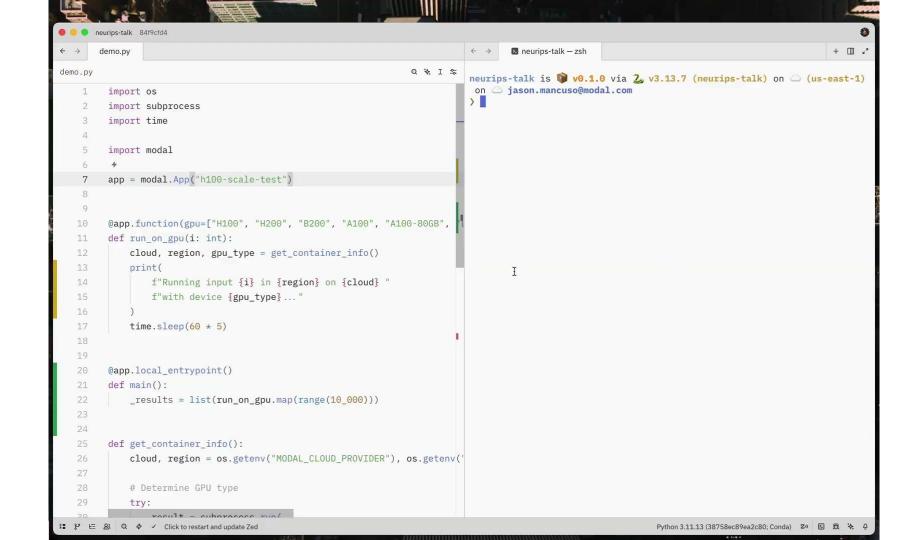


Recycling the World Computer: Fault-Tolerant LLM
Training on Idle GPU Capacity

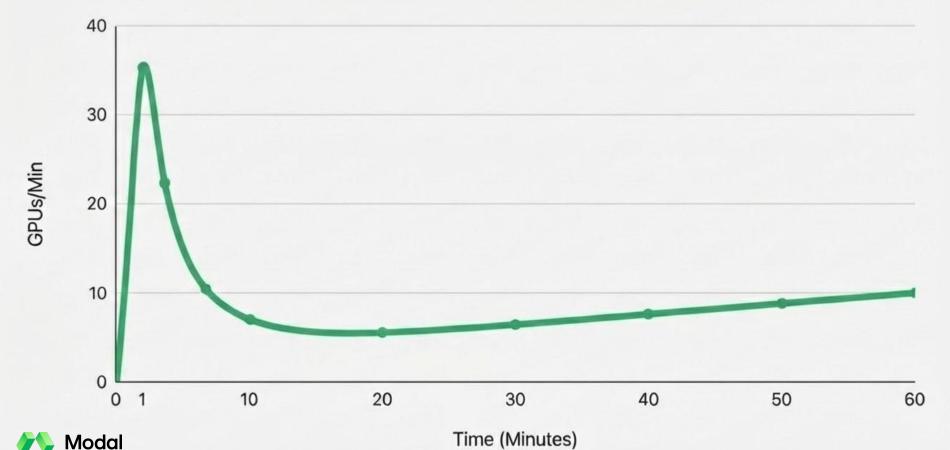
Benjamin Cowen, Jason Mancuso*, Shariq Mobin

Agenda

- What is Modal?
- 2. A crash course on Modal's core tech
 - a. Linear programming for optimal fleet management
 - b. Why the fleet will always have idle GPUs
- 3. How to recycle idle GPUs in a multi-cloud, multi-region fleet
- 4. Which tasks are most suitable for recycled compute?
 - a. Massively parallel + fault-tolerant + reentrant functions with no/low inter-replica communication
- 5. Pushing the limits of recycled compute toward large-scale LLM training



GPU Acquisition Rate Over Time (per Function)



Near instant cold-starts

- Near instant cold-starts
 - Custom container runtime, built to start from lazy-loaded, content-addressed images

Jonathan Belotti

Presentation Title

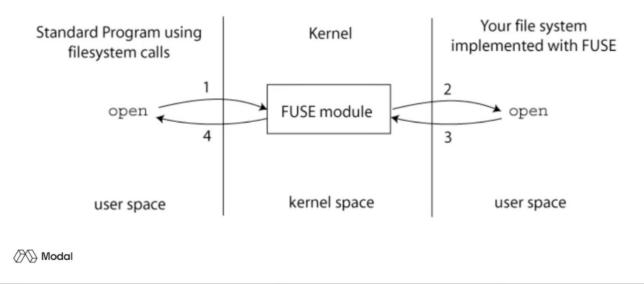
Fast, Lazy Container

Venue Host

TRÁIL

Lazy loading approach

Cold-starting our fat Python container



Fast, lazy container loading on Modal, Jonathon Belotti (via YouTube)

- Near instant cold-starts
 - Custom container runtime, built to start from lazy-loaded, content-addressed images

- Near instant cold-starts
 - Custom container runtime, built to start from lazy-loaded, content-addressed images
- Large, elastic, global compute pool

- Near instant cold-starts
 - Custom container runtime, built to start from lazy-loaded, content-addressed images
- Large, elastic, global compute pool
 - Multi-cloud worker fleet that scales dynamically in response to user workload demand

- Near instant cold-starts
 - Custom container runtime, built to start from lazy-loaded, content-addressed images
- Large, elastic, global compute pool
 - Multi-cloud worker fleet that scales dynamically in response to user workload demand

Multi-cloud Substrate

- Near instant cold-starts
 - Custom container runtime, built to start from lazy-loaded, content-addressed images
- Large, elastic, global compute pool
 - Multi-cloud worker fleet that scales dynamically in response to user workload demand

Managing our fleet is not only a logistics problem, but also an arbitrage opportunity.

Multi-cloud Substrate

Parameters:

A := total GPUs requested by users

B := count of GPUs in the buffer

 $I = \{I_1, I_2, \dots, I_n\} := \text{possible instance types}$

 $\mathbf{C} = [C_1, \dots, C_n] := \text{cost of instance types}$

 $\mathbf{L} = [L_1, \dots, L_n] :=$ scaling limits for each type

Output:

 $\mathbf{X} = [x_1, \dots, x_n] := \text{instances of each type to launch}$

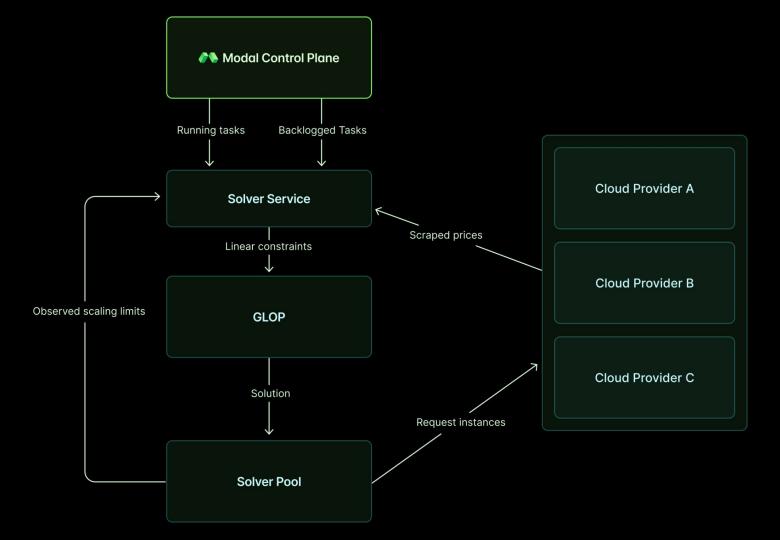
 $ext{minimize } \mathbf{C}^{ ext{T}} \mathbf{X} = \sum_{i} x_i C_i$

Constraints:

Objective:

$$8\sum_{i=1}^n x_i \geq A+B$$

$$x_i \leq L_i \quad (i=1,\ldots,n)$$



Buffer slots on active workers

- Buffer slots on active workers
 - These are intentional. We explicitly overprovision so that we can accommodate bursts in our user's workloads.

- Buffer slots on active workers
 - These are intentional. We explicitly overprovision so that we can accommodate bursts in our user's workloads.
- Idle slots on draining workers

Buffer slots on active workers

 These are intentional. We explicitly overprovision so that we can accommodate bursts in our user's workloads.

Idle slots on draining workers

- When the solver decides to prune a worker, we can't move it over until user tasks have fresh containers elsewhere in the fleet.
- Unused GPUs on draining workers can't accept new tasks, so they remain idle for the duration.

Recycled Compute

Running background tasks on these "idle" GPUs, whether in the buffer or in the drain.

For background tasks in the buffer, we need to be able to SIGKILL in ~10s or 100s of milliseconds.

How much Recycled Compute is available?

GPU Types (Inclusive)	Min VRAM	Estimated* Idle Compute	% Draining
B200,H200	141GB+	100k GPU-hrs/month	10%+
H100, A100-80 + above	80GB+	300k GPU-hrs/month	10%+
A100-40, L40S + above	40GB+	500k GPU-hrs/month	20%+
A10G, L4 + above	24GB+	1.2M GPU-hrs/month	30%+

How much Recycled Compute is available?

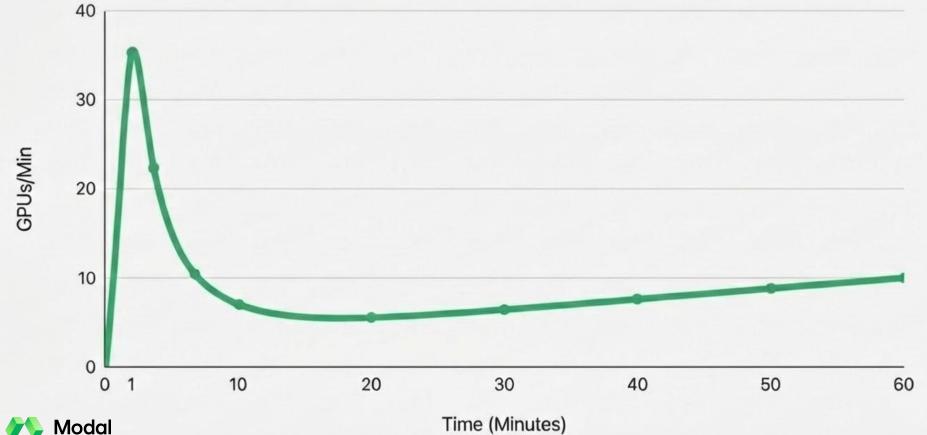
GPU Types (Inclusive)	Min VRAM	Estimated* Idle Compute	% Draining
B200,H200	141GB+	100k GPU-hrs/month	10%+
H100, A100-80 + above	80GB+	300k GPU-hrs/month	10%+
A100-40, L40S + above	40GB+	500k GPU-hrs/month	20%+
A10G, L4 + above	24GB+	1.2M GPU-hrs/month	30%+

Training Costs	Pre-Training	Context Extension	Post-Training	Total
in H800 GPU Hours	2664K	119K	5K	2788K
in USD	\$5.328M	\$0.238M	\$0.01M	\$5.576M

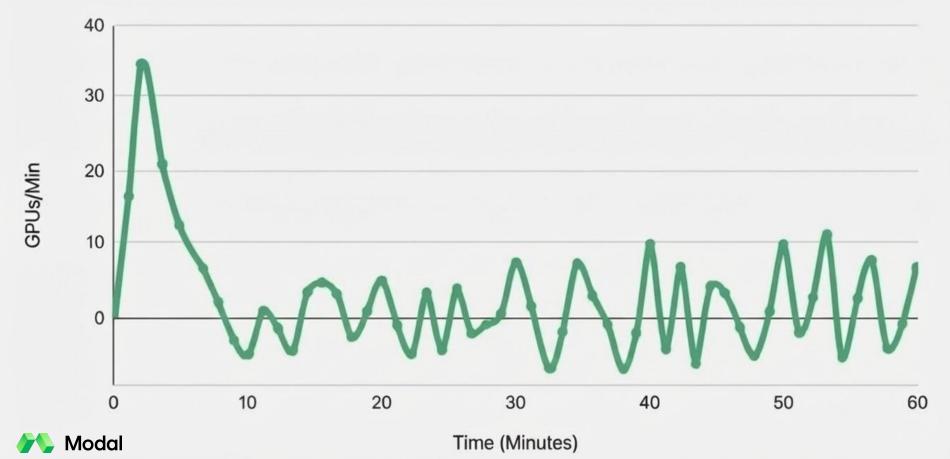
Table 1 | Training costs of DeepSeek-V3, assuming the rental price of H800 is \$2 per GPU hour.

Deepseek-Al 2025 (arxiv: 2412.19437)

GPU Acquisition Rate Over Time (per Function)



GPU Acquisition Rate Over Time (per Recycled Function)



The Shape of Recycled Compute

- Massively parallel
- Skewed hardware heterogeneity
- High availability in aggregate, but low for any one device
 - High preemption likelihood
- High variance interconnect
 - Inter-container network could be low-latency, high-bandwidth if within single AZ
 - But can't rely on Infiniband/NVLink/RDMA: (
 - Could be low-latency if within single geographic region
 - Could also be in completely different regions, communicating over unreliable WAN

The Shape of *Ideal Tasks* for Recycled Compute

- Massively parallel
- Hardware-agnostic
- Reentrant
 - Easy to checkpoint + resume on fresh container
- Parallel-wise fault-tolerant
 - Can still make progress if many individual replicas are preempted
- Little to no inter-replica communication

Ideal Tasks for Recycled Compute

	Hardware agnostic?	Reentrant?	Fault-tolerant parallelism?	Low comm?
Classical protein folding	•			•
Molecular physics simulation	•			•
Offline batch inference			4	•
Synthetic data (agentic rollouts)			4	•
Distributed LLM training	24	4		

Google DeepMind

DiLoCo: Distributed Low-Communication Training of Language Models

Arthur Douillard¹, Qixuan Feng¹, Andrei A. Rusu¹, Rachita Chhaparia¹, Yani Donchev¹, Adhiguna Kuncoro¹, Marc'Aurelio Ranzato¹, Arthur Szlam¹ and Jiajun Shen¹

arxiv: 2311.08105

¹Google DeepMind

Streaming DiLoCo with overlapping communication:

Towards a Distributed Free Lunch

Arthur Douillard*,1, Yanislav Donchev*,1, Keith Rush2, Satyen Kale†,2, Zachary Charles2, Zachary Garrett2, Gabriel Teston³, Dave Lacey¹, Ross McIlroy¹, Jiajun Shen¹, Alexandre Ramé¹, Arthur Szlam¹, Marc'Aurelio Ranzato¹ and Paul Barham¹

¹Google DeepMind, ²Google Research, ³Google, *Equal core contributions, †Currently at Apple.

arxiv: 2501.18512

Communication-Efficient Language Model Training Scales Reliably and Robustly:

Scaling Laws for DiLoCo

Zachary Charles^{1*} Gabriel Teston² Lucio Dery³ Keith Rush¹ Nova Fallen¹ Zachary Garrett¹ Arthur Szlam³ Arthur Douillard³

¹Google Research ²Google Search ³Google DeepMind

arxiv: 2503.09799

Communication-Efficient Language Model Training Scales Reliably

Harder: DiLoCo's hyperparameters are robust and predictable across model scales.

Better: DiLoCo further improves over data-parallel training as model size increases.

Faster: DiLoCo uses orders of magnitude less bandwidth than data-parallel training.

Stronger: DiLoCo tolerates a significantly larger batch size than data-parallel training.

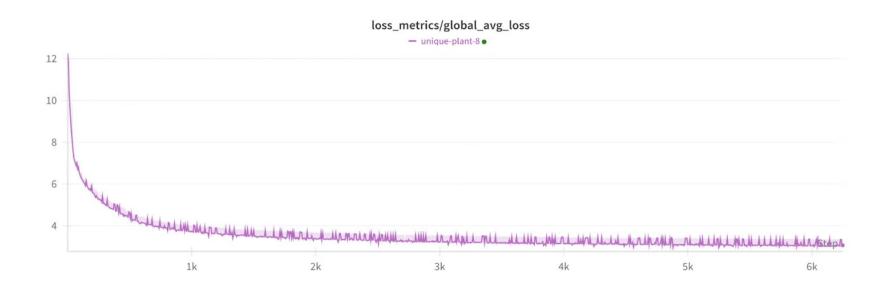
But what about fault-tolerance?!

Blog

Fault Tolerant Llama: training with 2000 synthetic failures every ~15 seconds and no checkpoints on Crusoe L40S

By Tristan Rice, Howard Huang June 20, 2025

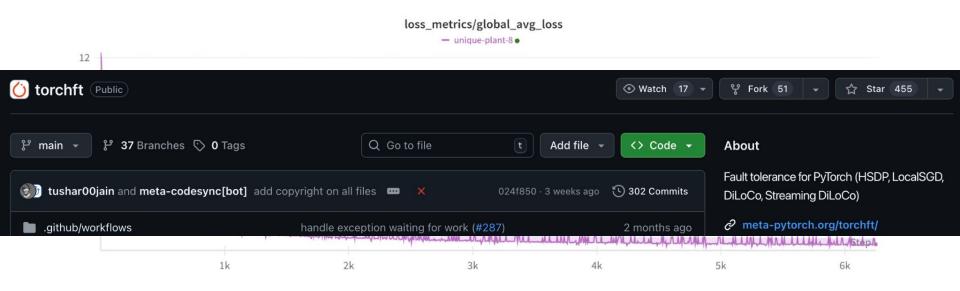
But what about fault-tolerance?!



Training loss across 1200 failures with no checkpoints.

NOTE: Each small spike is a non-participating worker recovering which affects the metrics but not the model

But what about fault-tolerance?!



Training loss across 1200 failures with no checkpoints.

NOTE: Each small spike is a non-participating worker recovering which affects the metrics but not the model

TorchFT ProcessGroup issues

TorchFT ProcessGroup issues

Explosion of egress costs

→ Need to customize collective communication ops to be geography-aware

TorchFT ProcessGroup issues

- → We use Tunnels for inter-container networking
- → ProcessGroup requires

Explosion of egress costs

→ Need to customize collective communication ops to be geography-aware

So, back to inference and evolutionary algorithms we go!

Thanks!

We're hiring: https://modal.jobs, or stop by Kiosk 9 in Expo Hall B!

\$30 free Modal credits: https://modal.com/signup

