Latent Thought Models with Variational Bayes Inference-Time Computation

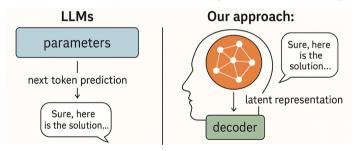
Jianwen Xie

\(\lambda\) Lambda

Motivation: The Language of Thought Hypothesis

The Problem: Standard LLMs have no explicit "thinking" step; "thinking" is an implicit, inseparable part of the token-generation process.

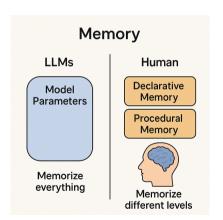
The Language of Thought [1] (Cognitive Science): Humans are hypothesized to use a structured, non-verbal "mentalese" to formulate thoughts before articulating them.



What if language models were given an explicit internal space for thought?

Motivation: A Model with Two Memory Systems

The Problem: Standard LLMs use a single, monolithic memory, storing specific facts and general rules together in their parameters.



The declarative/procedural model [2]:

Declarative Memory:

- 1. Explicit knowledge of facts and events;
- 2. Characterized by **fast learning**, rapidly capturing unique, single-instance experiences.

Procedural Memory:

- 1. Implicit skills and rules, like grammar and syntax;
- 2. Characterized by **slow learning**, gradually internalizing general structures over time.

Motivation: Beyond LLMs Scaling Laws

The Problem: The success of LLMs is driven by scaling laws that are now hitting a critical bottleneck: the scarcity of high-quality training data

Our Inspiration:

- 1. A "Language of Thought" that separates thinking from verbalization.
- 2. A dual-memory system that separates fast-learning facts from slow-learning skills.

The Central Question:

Can a model built on these principles unlock new scaling dimensions to achieve a new level of **sample and compute efficiency**?

Latent Thought Models (LTMs)

LTM: A model with explicit latent thought vectors z that guide text generation.

(1) Structure:

Latent thought vectors $\boldsymbol{z} = (\boldsymbol{z}_1, \dots, \boldsymbol{z}_L) \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$

(2) **Generation**:

Transformer decoder generates tokens conditional on \mathbf{z} as $p_{\beta}(\mathbf{x}|\mathbf{z})$, with a short context window (k=256)

- ★ Laver / uses **z**₁ via cross-attention.
- * Short context forces z to be an information carrier.
- $\star z \rightarrow$ declarative memory (local latent variable)
- $\star \beta \rightarrow$ procedural memory (global parameters)

$$p_{eta}(\mathbf{x}|\mathbf{z}) = \prod_{n=1}^{N} p_{eta}(x^{(n)}|\mathbf{z},\mathbf{x}^{(n-k:n-1)}).$$

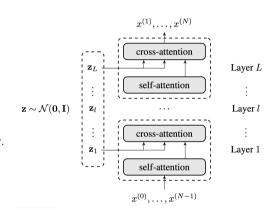


Figure: LTM Architecture (L = 12, N = 1024).

Fast-Slow Variational Bayes Learning

Variational Bayes: Optimize the Evidence Lower Bound (ELBO) with posterior $q(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mu, \sigma^2)$:

$$\mathcal{L}(\beta, \mu, \sigma^2) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[\log p_{\beta}(\mathbf{x}|\mathbf{z})] - \mathrm{KL}(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z})).$$

1. Fast Learning (Posterior Inference)

Aim: Infer local parameters (μ, σ^2) for each \mathbf{x} .

How: T_{fast} gradient steps on (μ, σ^2) per input as $\frac{\partial \mathcal{L}}{\partial \mu}, \frac{\partial \mathcal{L}}{\partial \sigma}$ and $\mathbf{z} = \mu + \sigma \cdot \epsilon$.

- Rapid, on-the-fly "thinking" or parsing
- Inference-time (test-time) computation
- declarative memory

2. Slow Learning (Decoder Training)

Aim: Update the shared decoder parameters β .

How: A single gradient step on β per batch as $\frac{\partial \mathcal{L}}{\partial \beta}$.

- Gradual accumulation of grammar/syntax
- procedural memory.

Algorithm 1 Dual-rate learning of LTM

```
1: Training data \{\mathbf{x}_i\}_{i=1}^N, generator p_{\beta}(\mathbf{x}|\mathbf{z}), learning
      rates \eta_{\text{fast}} and \eta_{\text{slow}}, fast learning steps T_{\text{fast}}.
 2: while not converged do
          Sample mini-batch \{\mathbf{x}_i\}_{i=1}^B
          for each x_i in the mini-batch do
 5:
              // fast learning
             Initialize \mu_i, \sigma_i^2
 6:
             for t=1 to T_{\text{fast}} do
 8:
                 Sample \mathbf{z} \sim q_{\boldsymbol{\mu}_i, \boldsymbol{\sigma}_i^2}(\mathbf{z}|\mathbf{x}_i)
 9:
                 Compute
                  \mathcal{L}_i = \mathbb{E}_q[\log p_\beta(\mathbf{x}_i|\mathbf{z})] - D_{\mathrm{KL}}(q(\mathbf{z}|\mathbf{x}_i)||p(\mathbf{z})).
10:
                  Update \mu_i, \sigma_i^2 using AdamW with \eta_{\text{fast}}.
              end for
11:
          end for
12:
13:
          // slow learning
         Compute batch loss \mathcal{L}_{batch} = \frac{1}{B} \sum_{i=1}^{B} \mathcal{L}_{i}
14:
          Update \beta using AdamW with \eta_{slow}.
15:
16: end while
```

Generation

Conditional: **x** question/instruction, **y** answer/completion.

$$ho_eta(\mathbf{y}|\mathbf{x}) pprox \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[
ho_eta(\mathbf{y}|\mathbf{x},\mathbf{z})].$$

Uses variational inference for \mathbf{z} , then autoregressive sampling.

Unconditional:

$$p_{eta}(\mathbf{x}) = \mathbb{E}_{p(\mathbf{z})}[p_{eta}(\mathbf{x}|\mathbf{z})].$$

Experimental Setup

Dataset:

- Training: OpenWebText (8B tokens) [3];
- Validation: Penn Tree Bank (PTB) [4], WikiText [5], etc.

Baselines:

- Autoregressive models: GPT-2 [6], AR [8]
- Discrete diffusion models: SEDD [7], MDLM [8], MD4 [9].

LTMs:

— Small (38M, 3 layers), Medium (51M, 6 layers), Large (76M, 12 layers).

^[3] Gokaslan, A. and Cohen, V. Openwebtext corpus. http://Skylion007.github.io/ OpenWebTextCorpus, 2019.

 $^{[4] \} Marcus, \ M. \ et \ al. \ Building \ a \ large \ annotated \ corpus \ of english: \ The \ penn \ treebank. \ Computational \ linguistics, \ 19(2):313-330, \ 1993.$

^[5] Merity, S., et al. Pointer sentinel mixture models. arXiv preprint arXiv:1609.07843, 2016.

^[6] Radford, A., et al. Language models are unsupervised multitask learners. OpenAl blog, 2019.

^[7] Lou, A. et al. Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution. ICML, 2024.

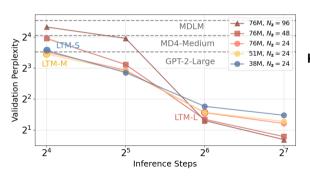
^[8] Sahoo, S. S. et al. Simple and effective masked diffusion language models. arXiv preprint arXiv:2406.07524, 2024.

^[9] Shi, J. et al. Simplified and generalized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

Scaling Behaviors: Inference-Time Computation as New Dimensions

Latent Thought Model (LTM)s introduce new ways to trade compute for performance, beyond just model and data size. Inference-time Computation = T_{fast} steps of gradient descent to get $q(\mathbf{z}|\mathbf{x})$.

The total training cost, training FLOPs per token (trFLOPs/tok), is dominated by **inference steps** (T_{fast}) .



Key Insights:

- 1. Increasing inference steps consistently improves performance.
- 2. Adding more latent thought vectors (N_z) provides additional gains, especially for larger models.

Figure: Validation perplexity across configurations.

Zero-Shot Perplexity: Dominating Baselines

LTMs achieve significantly better perplexity with far fewer parameters.

Model Family	Model Size	trFLOPs/tok	# Tokens	PTB	WikiText	LM1B	LAMBADA	AG News	PubMed	Arxiv
GPT-2-Medium	345 M	2.42G	_	130.04	32.14	44.03	36.09	44.53	23.33	23.82
GPT-2-Large	762M	5.32G	_	161.33	30.09	45.61	34.26	39.93	68.15	21.01
AR (Sahoo et al., 2024)	$110\mathbf{M}$	0.85G	524B	82.05	25.75	51.25	51.28	52.09	49.01	41.73
AR-Retrained	76M	0.46G	$105\mathbf{B}$	258.95	52.49	107.37	61.55	110.31	60.61	55.35
SEDD (Sahoo et al., 2024)	110 M	0.85G	524B	≤ 100.09	≤ 34.28	≤ 68.20	≤ 49.86	≤ 62.09	≤ 44.53	≤ 38.48
SEDD (Lou et al., 2024)	345M	2.42G	_	≤ 87.12	≤ 29.98	≤ 61.19	≤ 42.66	_	-	_
MDLM (Sahoo et al., 2024)	110M	0.85G	524B	≤ 95.26	≤ 32.83	≤ 67.01	≤ 47.52	≤ 61.15	≤ 41.89	≤ 37.37
MD4 (Shi et al., 2024)	345M	2.42G	-	≤ 66.07	≤ 25.84	≤ 51.45	≤ 44.12	-	-	-
LTM-Small ($T_{\text{fast}} = 16$)	38M	4.07G	7B	≤ 34.71	≤ 18.87	≤ 23.59	≤ 19.31	≤ 34.76	≤ 22.73	≤ 21.67
LTM-Medium ($T_{\text{fast}} = 16$)	51M	5.52G	5.2B	≤ 32.06	≤ 17.39	≤ 25.16	≤ 17.32	≤ 27.89	≤ 20.45	≤ 19.22
LTM-Large ($T_{\text{fast}} = 64$)	76M	32.2G	0.9B	≤ 4.43	≤ 3.66	≤ 3.92	≤ 3.48	≤ 4.56	≤ 3.87	≤ 3.54

LTM-Large, with only 76M parameters, achieves state-of-the-art perplexity.

Jianwen Xie Latent Thought Models 11 / 15

Scaling over Tokens and Compute

Models with more inference steps achieve better sample efficiency and become more compute-efficient at larger scales.

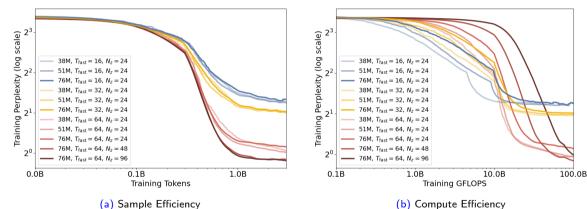
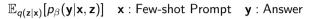


Figure: Scaling behavior over training tokens (left) and GFLOPs (right).

Emergent Few-Shot Reasoning at Small Scale

LTMs demonstrate in-context learning capabilities for arithmetic reasoning (GSM8K) at significantly smaller scales.



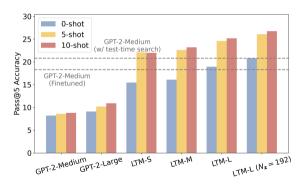


Figure: Pass@5 accuracy on GSM8K.

Jianwen Xie Latent Thought Models 13 / 15

Conclusion

We present Latent Thought Models (LTMs), a new class of language models that leverage explicit latent vectors and inference-time computation.

Key Achievements:

Established new scaling laws for inference steps.

Achieved state-of-the-art perplexity and superior parameter efficiency.

Unlocked few-shot reasoning at small model scales.

Acknowledgments

I thank Deqian Kong, Minglu Zhao, Dehong Xu, Bo Pang, Shu Wang, Edouardo Honig, Zhangzhang Si, Chuan Li, Sirui Xie, and Ying Nian Wu for their collaboration.

Thank you!