

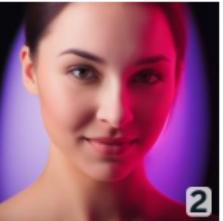
Prefilled responses enhance zero-shot detection of AI-generated images

Zoher Kachwala Danishjeet Singh Danielle Yang Filippo Menczer

December 5, 2025

Observatory on Social Media (OSoMe), Indiana University

Can You Spot the Synthetic Images?



Can You Spot the Synthetic Images?



Images 3, 10, and 11 are real.

Risks of Synthetic Images

- **Image generation quality:** Modern techniques produce synthetic images nearly indistinguishable from real ones [1, 2, 3]
- **Enables malicious use:** Convincing forgeries facilitate impersonation, copyright infringement, and disinformation [4, 5, 6]
- **Threatens societal trust:** Widespread synthetic media undermines visual trust and information integrity [7, 8, 9, 10]

Urgent need for robust detection methods to maintain trust in visual media

Related Work: Supervised Detection

Three main approaches for detecting AI-generated images:

Artifact-based

CNNs/ViTs detect unnatural textures, edges [11, 12]

✗Overfits to specific generators [13, 14]

Frequency-domain

FFT/DCT analyze spectral patterns [15, 16]
✗Fails on diffusion models [17, 18]

Spatial-domain

Examines pixel patterns, structures [19, 20]
✗Fails on photorealistic outputs [21]
✗Sensitive to compression and resizing [22]

Supervised methods struggle with new generators.

Related Work: VLMs and Prompting

Large Language Models:

- Trained on diverse reasoning tasks [23]
- Step-by-step reasoning enables adaptation to new tasks [24, 25]

Vision-Language Models:

- Trained on short image-text tasks [26]
- Poorer step-by-step reasoning leads to weaker adaptation [27, 28]

My Approach: Prefill-Guided Thinking

Goal:

- Improve VLM's step-by-step reasoning, specifically for detection of synthetic images without any training

Key Idea:

- Instead of user-prompting, *prefilled responses* guide VLM's step-by-step reasoning for detection of synthetic images

Synthetic Image Detection: Task

Ground Truth: AI-generated

Task: Binary classification

- Input: Image
- Output: Real or AI-generated

Evaluation: Macro F1

- Average of F1 scores for both classes
- Balances performance on both classes

Synthetic Image Detection: Datasets & Models

Datasets:

- D3 (first row): 6,736 web images across domains from 4 generators [18]
- DF40 (middle row): 10,000 faces from 6 generators [29]
- GenImage (bottom row): 10,000 ImageNet objects from 8 generators [30]

Models:

- Qwen2.5-VL-7B-Instruct
- LLaVA-OneVision-7B
- Llama-3.2-Vision-11B-Instruct

Method: Baseline

User: [Image] Is this image real or AI-generated?

Assistant: *The image appears to be real.* The details in the elephant's skin texture, the natural lighting, and the background vegetation suggest that this is a photograph of a real elephant in a natural or zoo-like setting. There are no visible signs of digital manipulation or artificial elements that would indicate it is AI-generated.

Final Answer(real/ai-generated): real. X

VLM incorrectly classifies AI-generated elephant as real.

Method: Chain-of-Thought Prefill

User: [Image] Is this image real or AI-generated?

Assistant: Let's think step by step:

1. **Details in the Skin Texture:** The skin texture of the elephant appears very detailed and realistic, with visible wrinkles and folds that are typical of an elephant's skin... (continues)...

Based on these observations, *it is likely that this image is real rather than AI-generated.*

Final Answer(real/ai-generated): real. X

Chain-of-thought [25] prefill improves reasoning but still incorrect.

Method: S2 Prefill

User: [Image] Is this image real or AI-generated?

Assistant: Let's examine the style and the synthesis artifacts in the image:

1. **Texture and Detail:** The skin texture of the elephant appears somewhat uniform and lacks the fine, natural variations that are typically seen in real elephants....(continues)...

Based on these observations, *it is likely that this image is AI-generated rather than a real photograph.*

Final Answer(real/ai-generated): ai-generated. ✓

Task-aligned prefill guides VLM to correct classification.

Method: S2 Pseudo-Prefill

System: Please start your responses with ``Let's examine the style and the synthesis artifacts''

User: [Image] Is this image real or AI-generated?

Assistant: Let's examine the style and the synthesis artifacts to determine if the image is real or AI-generated.

1. Style Analysis:

- *The image appears to be a photograph of a real elephant... (continues)...*

Based on the style analysis and the absence of synthesis artifacts, it is reasonable to conclude that this image is real and not AI-generated.

Final Answer(real/ai-generated): real. X

Instructing via system field does not replicate prefill effect.

Method: S2 User Prompt

User: [Image] Is this image real or AI-generated? Please examine the style and the synthesis artifacts.

Assistant: *The image appears to be real.* Here are some observations that support this conclusion:

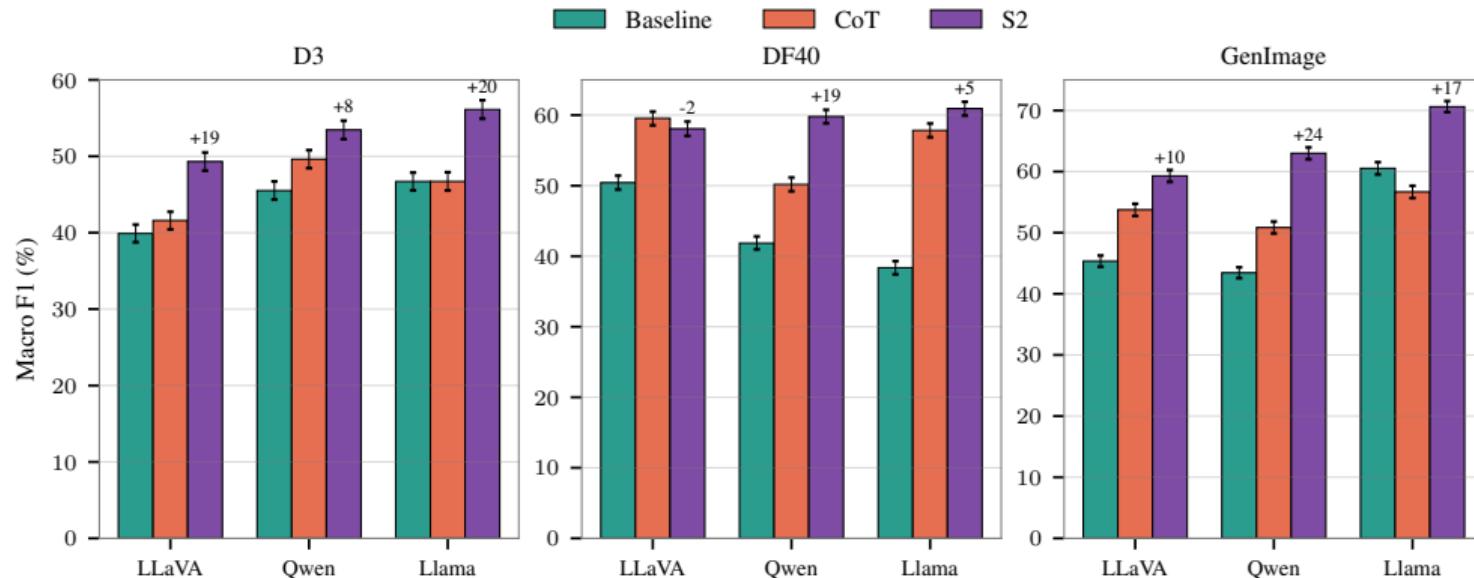
1. **Texture and Detail:** The skin texture of the elephant is highly detailed and realistic....(continues)...

Overall, based on these observations, the image appears to be real rather than AI-generated.

Final Answer(real/ai-generated): real. **X**

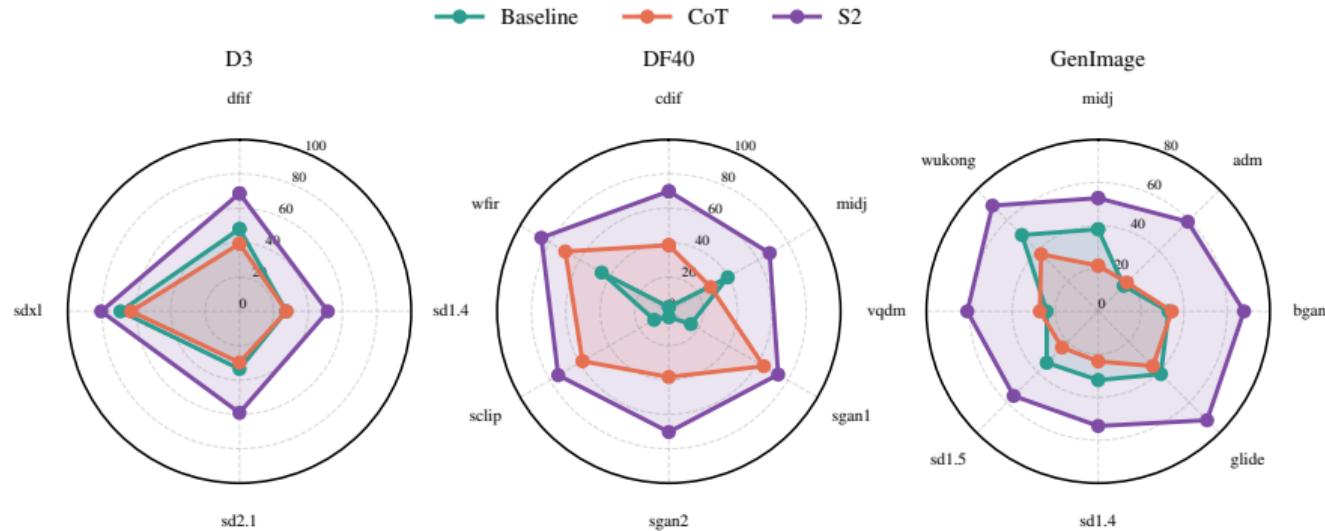
User prompt with task-aligned phrasing also fails.

Results: Detection Performance (Macro F1 %)



With the exception of LLaVA on DF40, S2 (task-aligned prefill) consistently outperforms CoT and baseline across models and datasets, with up to 24% relative improvement.

Results: Per-Generator Recall (Llama)



S2 prefill achieves 15-200% recall improvement across 16 state-of-the-art generators, demonstrating strong generalization.

Results: Guidance Comparison

Phrase	Type	D3	DF40	GenImage
Baseline	—	46.7	42.3	44.5
CoT	Prefill	49.8	48.8	53.3
	Pseudo-Prefill	48.9 (-0.9)	44.1 (-4.7)	48.8 (-4.5)
	Prompt	45.5 (-4.3)	46.7 (-2.1)	50.4 (-2.9)
S2	Prefill	53.2	61.2	64.8
	Pseudo-Prefill	43.4 (-9.8)	45.2 (-16.0)	47.3 (-17.5)
	Prompt	49.7 (-3.5)	48.8 (-12.4)	50.2 (-14.6)

Macro F1 (%) for Qwen across guidance types. Direct prefilling works best.

Results: Prefill Phrasing Sensitivity

Phrase	Prefix	D3	DF40	GenImage
Baseline	—	46.7	42.3	44.5
CoT	Let's think step by step	49.8	48.8	53.3
S2	Let's examine the style and synthesis artifacts	53.2	61.2	64.8
Variants	Let's observe the style and synthesis artifacts	55.6 (+2.4)	62.3 (+1.1)	64.6 (-0.2)
	Let's examine the synthesis artifacts	54.6 (+1.4)	60.9 (-0.3)	64.0 (-0.8)
	Let's examine the style	48.5 (-4.7)	55.7 (-5.5)	54.6 (-10.2)
	Let's examine the details	49.2 (-4.0)	50.9 (-10.3)	51.2 (-13.6)
	Let's examine the flaws	58.3 (+5.1)	40.0 (-21.2)	54.1 (-10.7)

Macro F1 (%) for Qwen. Any variation of S2, always performs better than the baseline.

Why Do Prefills Work?

Experiment: Measure class probabilities at intervals during reasoning

- **Probe:** `Final Answer (real/ai-generated): This image is`
- **Intervals:** 0%, 25%, 50%, 75%, 100% of reasoning (by sentence count)
- **Metric:** Maximum class probability (class confidence)

Question: How do prefills affect the reasoning process and confidence, compared to baseline and prompts?

Example: Reasoning Intervals (Baseline)

User: [Image] Is this image real or AI-generated?

0%

Assistant:

25%

Assistant: The image appears to be real.

50%

Assistant: The image appears to be real. The details in the elephant's skin texture, the natural lighting, and the background vegetation

75%

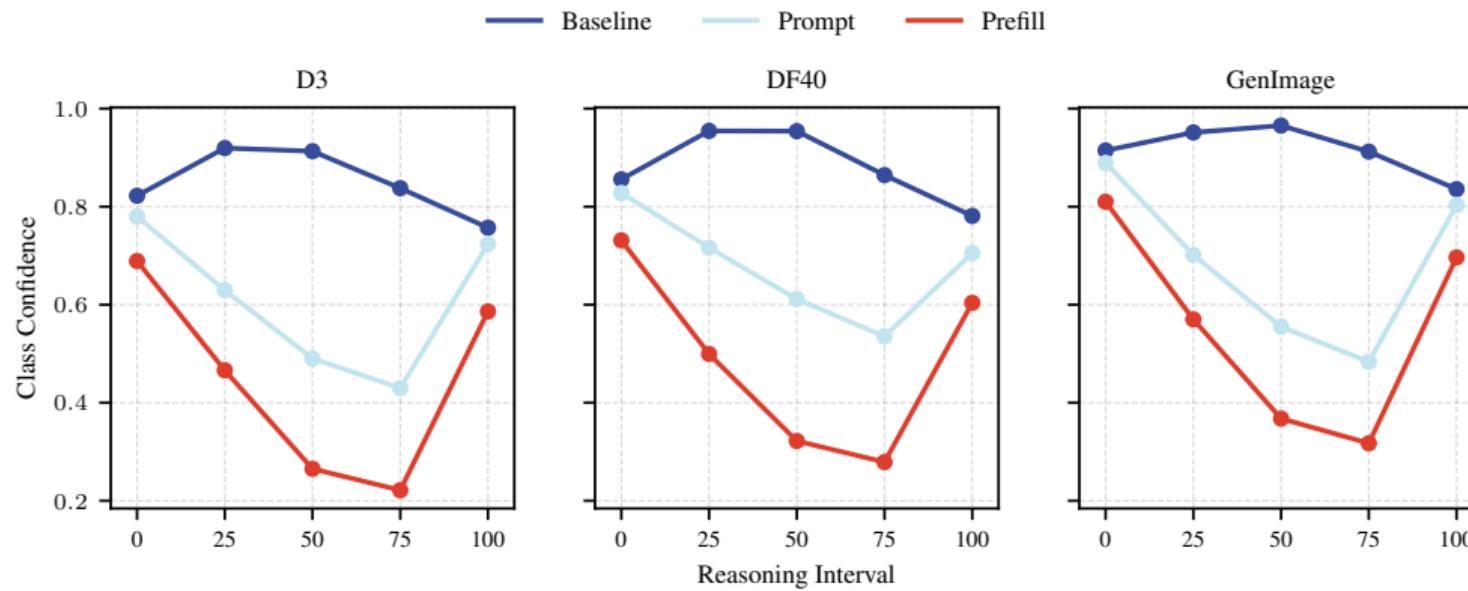
Assistant: The image appears to be real. The details in the elephant's skin texture, the natural lighting, and the background vegetation suggest that this is a photograph of a real elephant in a natural or zoo-like setting.

100%

Assistant: The image appears to be real. The details in the elephant's skin texture, the natural lighting, and the background vegetation suggest that this is a photograph of a real elephant in a natural or zoo-like setting. There are no visible signs of digital manipulation or artificial elements that would indicate it is AI-generated.

At each interval, we probe with: Final Answer(real/ai-generated): This image is and extract the class probabilities.

Results: Confidence Changes During Reasoning (Qwen)



Baseline produces overconfident reasoning, while prompts and prefills induce humility toward class labels—mirroring the Dunning-Kruger effect [31].

Contribution

Prefill-Guided Thinking

- A new way to elicit step-by-step reasoning from vision-language models for zero-shot detection of AI-generated images.
- **Up to 24% MacroF1 improvement** across 16 state-of-the-art generators
- **No training data** required
- **Higher humility** about class labels during reasoning leads to more accurate detection

Under Review: ACL ARR

References i

- [1] Robin Rombach et al. "High-Resolution Image Synthesis with Latent Diffusion Models". en. In: *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. New Orleans, LA, USA: IEEE, June 2022, pp. 10674–10685.
- [2] Junnan Li et al. "BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models". en. In: *Proceedings of the 40th International Conference on Machine Learning*. ISSN: 2640-3498. PMLR, July 2023, pp. 19730–19742.
- [3] Prafulla Dhariwal and Alexander Nichol. "Diffusion Models Beat GANs on Image Synthesis". In: *Advances in Neural Information Processing Systems*. Vol. 34. Curran Associates, Inc., 2021, pp. 8780–8794.
- [4] Lingzhi Li et al. "Advancing High Fidelity Identity Swapping for Forgery Detection". en. In: *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. Seattle, WA, USA: IEEE, June 2020, pp. 5073–5082.

References ii

- [5] Andreas Lugmayr et al. "RePaint: Inpainting using Denoising Diffusion Probabilistic Models". en. In: *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. New Orleans, LA, USA: IEEE, June 2022, pp. 11451–11461.
- [6] Zeyu Lu et al. "Seeing is not always believing: Benchmarking Human and Model Perception of AI-Generated Images". en. In: *Advances in Neural Information Processing Systems 36* (Dec. 2023), pp. 25435–25447.
- [7] Kaicheng Yang, Danishjeet Singh, and Filippo Menczer. "Characteristics and Prevalence of Fake Social Media Profiles with AI-generated Faces". en. In: *Journal of Online Trust and Safety 2.4* (Sept. 2024). Number: 4.
- [8] Gowthami Somepalli et al. "Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models". en. In: *2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. Vancouver, BC, Canada: IEEE, June 2023, pp. 6048–6058.

References iii

- [9] Renée DiResta and Josh A. Goldstein. "How spammers and scammers leverage AI-generated images on Facebook for audience growth". en-US. In: *Harvard Kennedy School Misinformation Review* (Aug. 2024).
- [10] Bilva Chandra. *Analyzing Harms from AI-Generated Images and Safeguarding Online Authenticity*. en. RAND Corporation, 2024.
- [11] Darius Afchar et al. "MesoNet: a Compact Facial Video Forgery Detection Network". In: *2018 IEEE International Workshop on Information Forensics and Security (WIFS)*. ISSN: 2157-4774. Dec. 2018, pp. 1–7.
- [12] François Chollet. "Xception: Deep Learning with Depthwise Separable Convolutions". In: *2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*. ISSN: 1063-6919. July 2017, pp. 1800–1807.

References iv

- [13] Sheng-Yu Wang et al. "CNN-Generated Images Are Surprisingly Easy to Spot... for Now". English. In: *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. IEEE Computer Society, June 2020, pp. 8692–8701.
- [14] Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. "Towards Universal Fake Image Detectors that Generalize Across Generative Models". en. In: *2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. Vancouver, BC, Canada: IEEE, June 2023, pp. 24480–24489.
- [15] Hanzhe Li et al. "FreqBlender: Enhancing DeepFake Detection by Blending Frequency Knowledge". en. In: *Advances in Neural Information Processing Systems 37* (Dec. 2024), pp. 44965–44988.
- [16] Tarik Dzanic, Karan Shah, and Freddie Witherden. "Fourier Spectrum Discrepancies in Deep Network Generated Images". In: *Advances in Neural Information Processing Systems*. Vol. 33. Curran Associates, Inc., 2020, pp. 3022–3032.

References v

- [17] Davide Cozzolino et al. “Raising the Bar of AI-generated Image Detection with CLIP”. en. In: *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*. Seattle, WA, USA: IEEE, June 2024, pp. 4356–4366.
- [18] Lorenzo Baraldi et al. “Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities”. In: *Computer Vision – ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part LXIII*. Berlin, Heidelberg: Springer-Verlag, Nov. 2024, pp. 199–216.
- [19] Chende Zheng et al. “Breaking Semantic Artifacts for Generalized AI-generated Image Detection”. en. In: *Advances in Neural Information Processing Systems 37* (Dec. 2024), pp. 59570–59596.
- [20] Peng Zhou et al. “Learning Rich Features for Image Manipulation Detection”. In: *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition*. ISSN: 2575-7075. June 2018, pp. 1053–1061.

- [21] Andreas Rössler et al. "FaceForensics++: Learning to Detect Manipulated Facial Images". In: *2019 IEEE/CVF International Conference on Computer Vision (ICCV)*. ISSN: 2380-7504. Oct. 2019, pp. 1–11.
- [22] Quentin Bammey. "Synthbuster: Towards Detection of Diffusion Model Generated Images". In: *IEEE Open Journal of Signal Processing* 5 (2024), pp. 1–9.
- [23] Tom B. Brown et al. "Language models are few-shot learners". In: *Proceedings of the 34th International Conference on Neural Information Processing Systems*. NIPS '20. Red Hook, NY, USA: Curran Associates Inc., Dec. 2020, pp. 1877–1901.
- [24] Jason Wei et al. "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models". en. In: *Advances in Neural Information Processing Systems* 35 (Dec. 2022), pp. 24824–24837.

References vii

- [25] Takeshi Kojima et al. “Large Language Models are Zero-Shot Reasoners”. en. In: *Advances in Neural Information Processing Systems 35* (Dec. 2022), pp. 22199–22213.
- [26] Alec Radford et al. “Learning Transferable Visual Models From Natural Language Supervision”. en. In: *Proceedings of the 38th International Conference on Machine Learning*. ISSN: 2640-3498. PMLR, July 2021, pp. 8748–8763.
- [27] Ruohong Zhang et al. “Improve Vision Language Model Chain-of-thought Reasoning”. In: *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Ed. by Wanxiang Che et al. Vienna, Austria: Association for Computational Linguistics, July 2025, pp. 1631–1662.

References viii

- [28] Yangyi Chen et al. "Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models". In: *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*. Ed. by Kevin Duh, Helena Gomez, and Steven Bethard. Mexico City, Mexico: Association for Computational Linguistics, June 2024, pp. 192–210.
- [29] Zhiyuan Yan et al. "DF40: Toward Next-Generation Deepfake Detection". en. In: *Advances in Neural Information Processing Systems* 37 (Dec. 2024), pp. 29387–29434.
- [30] Mingjian Zhu et al. "GenImage: A Million-Scale Benchmark for Detecting AI-Generated Image". en. In: *Advances in Neural Information Processing Systems* 36 (Dec. 2023), pp. 77771–77782.
- [31] J. Kruger and D. Dunning. "Unskilled and unaware of it: how difficulties in recognizing one's own incompetence lead to inflated self-assessments". eng. In: *Journal of Personality and Social Psychology* 77.6 (Dec. 1999), pp. 1121–1134.