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Can You Spot the Synthetic Images?




Can You Spot the Synthetic Images?
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Risks of Synthetic Images

- Image generation quality: Modern techniques produce synthetic images nearly
indistinguishable from real ones [1, 2, 3]

- Enables malicious use: Convincing forgeries facilitate impersonation, copyright
infringement, and disinformation [4, 5, 6]

» Threatens societal trust: Widespread synthetic media undermines visual trust
and information integrity [7, 8, 9, 10]

Urgent need for robust detection methods to maintain trust in visual media



Related Work: Supervised Detection

Three main approaches for detecting Al-generated images:

Artifact-based Frequency-domain Spatial-domain

CNNSs/ViTs detect unnatural textures, edges [11, FFT/DCT analyze spectral patterns [15, 16] Examines pixel patterns, structures [19, 20]
12] XFails on diffusion models [17, 18] XFails on photorealistic outputs [21]
XOverfits to specific generators [13, 14] XSensitive to compression and resizing [22]

Supervised methods struggle with new generators.



Related Work: VLMs and Prompting

Large Language Models: Vision-Language Models:
+ Trained on diverse reasoning tasks [23] + Trained on short image-text tasks [26]
+ Step-by-step reasoning enables + Poorer step-by-step reasoning leads to

adaptation to new tasks [24, 25] weaker adaptation [27, 28]



My Approach: Prefill-Guided Thinking

Goal:

* Improve VLM's step-by-step reasoning, specifically for detection of
synthetic images without any training

Key Idea:

 Instead of user-prompting, prefilled responses guide VLM's step-by-step
reasoning for detection of synthetic images



Synthetic Image Detection: Task

Task: Binary classification
 Input: Image

« Output: Real or Al-generated

Evaluation: Macro F1
 Average of F1 scores for both classes

» Balances performance on both classes

Ground Truth: Al-generated



Synthetic Image Detection: Datasets & Models

Datasets:

« D3 (first row): 6,736 web images
across domains from 4
generators [18]

» DF40 (middle row): 10,000 faces from
6 generators [29]

» Genlmage (bottom row): 10,000
ImageNet objects from 8
generators [30]

Models:

* Qwen2.5-VL-7B-Instruct

- LLaVA-OneVision-7B

« Llama-3.2-Vision-11B-Instruct




Method: Baseline

‘User: [Image]l Is this image real or AI-generated?

Assistant: The image appears to be real. The details in the elephant's skin
texture, the natural lighting, and the background vegetation suggest that this
is a photograph of a real elephant in a natural or zoo-like setting. There are
no visible signs of digital manipulation or artificial elements that would
indicate it is AI-generated.

[Final Answer(real/ai-generated):| real. X

VLM incorrectly classifies Al-generated elephant as real.



Method: Chain-of-Thought Prefill

‘User: [Image] Is this image real or AI-generated?

Assistant: [Let's think step by step|:

1. Details in the Skin Texture: The skin texture of the elephant appears very
detailed and realistic, with visible wrinkles and folds that are typical of an
elephant's skin...(continues)..

Based on these observations, it is likely that this image is real rather than
AI-generated.

[Final Answer(real/ai-generated):| real. X

Chain-of-thought [25] prefill improves reasoning but still incorrect.



Method: S2 Prefill

‘ User: [Image] Is this image real or AI-generated?

Assistant: [Let's examine the style and the synthesis artifacts| in the image:
1. Texture and Detail: The skin texture of the elephant appears somewhat
uniform and lacks the fine, natural variations that are typically seen in real
elephants...(continues)..

Based on these observations, it is likely that this image is AI-generated
rather than a real photograph.

[Final Answer (real/ai-generated):| ai-generated. v/

Task-aligned prefill guides VLM to correct classification.



Method: S2 Pseudo-Prefill

System: Please start your responses with '‘Let's examine the style and the
synthesis artifacts''

‘User: [Image]l Is this image real or AI-generated?

Assistant: Let's examine the style and the synthesis artifacts to determine if
the image is real or AI-generated.

1. Style Analysis:

- The image appears to be a photograph of a real elephant...(continues)..

Based on the style analysis and the absence of synthesis artifacts, it is
reasonable to conclude that this image is real and not AI-generated.

[Final Answer(real/ai-generated):| real. X

Instructing via system field does not replicate prefill effect.



Method: S2 User Prompt

User: [Image]l Is this image real or AI-generated? Please examine the style and
the synthesis artifacts.

Assistant: The image appears to be real. Here are some observations that
support this conclusion:

1. Texture and Detail: The skin texture of the elephant is highly detailed and
realistic...(continues)..

Overall, based on these observations, the image appears to be real rather than
AI-generated.

[Final Answer (real/ai-generated):| real. X

User prompt with task-aligned phrasing also fails.



Results: Detection Performance (Macro F1 %)
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With the exception of LLaVA on DF40, S2 (task-aligned prefill) consistently outperforms CoT and
baseline across models and datasets, with up to 24% relative improvement.



Results: Per-Generator Recall (Llama)
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S2 prefill achieves 15-200% recall improvement across 16 state-of-the-art generators,

demonstrating strong generalization.



Results: Guidance Comparison

Phrase Type D3 DF40 Genlmage

Baseline — 46.7 42.3 44.5
Prefill 49.8 48.8 53.3

CoT Pseudo-Prefill 48.9 o9y 44.1 a7y 48.8 (a5
Prompt 455 a3 46.7 21y 50.4 (29
Prefill 53.2 61.2 64.8

S2 Pseudo-Prefill  43.4 98 45.2 (1600 47.3 (175)
Prompt 49.7 (35 48.8¢124) 50.2 (146)

Macro F1 (%) for Qwen across guidance types. Direct prefilling works best.



Results: Prefill Phrasing Sensitivity

Phrase Prefill D3 DF40 Genlmage

Baseline — 46.7 42.3 445

CoT [Let's think step by step| 49.8 48.8 53.3

S2 [Let's examine the style and synthesis artifacts| 53.2 61.2 64.8
[Let's observe the style and synthesis artifacts| 55.6 (+2.4) 62.3 (+1.1) 64.6 (-0.2)
[Let's examine the synthesis artifacts| 546 (+1.4) 609 (-0.3) 640 (-0.8)

Variants [Let's examine the style 48.5 (-4.7) 55.7 (-5.5) 54.6 (-10.2)
Let's examine the details 492 (-4.0) 509 (-10.3) 512 (-13.6)
Let's examine the flaws! 58.3 (+5.1) 40.0 (-21.2) 54.1 (-10.7)

Macro F1 (%) for Qwen. Any variation of S2, always performs better than the baseline.



Why Do Prefills Work?

Experiment: Measure class probabilities at intervals during reasoning

* Probe: Final Answer(real/ai-generated): This image is|

* Intervals: 0%, 25%, 50%, 75%, 100% of reasoning (by sentence count)

* Metric: Maximum class probability (class confidence)

Question: How do prefills affect the reasoning process and confidence, compared to
baseline and prompts?



Example: Reasoning Intervals (Baseline)

|User: [Image] Is this image real or AI-generated?

0%

Assistant:

25%

Assistant: The image
appears to be real.

50%

Assistant: The image
appears to be real.
The details in the
elephant's skin
texture, the natural
lighting, and the
background vegetation

75%

Assistant: The image
appears to be real.
The details in the
elephant's skin
texture, the natural
lighting, and the
background vegetation
suggest that this is a
photograph of a real
elephant in a natural
or zoo-like setting.

100%

Assistant: The image
appears to be real.
The details in the
elephant's skin
texture, the natural
lighting, and the
background vegetation
suggest that this

is a photograph of a
real elephant in a
natural or zoo-like
setting. There are

no visible signs of
digital manipulation
or artificial elements
that would indicate it
is AI-generated.

At each interval, we probe with: [Final answer(real/ai-generated): This image is| and extract the class probabilities.




Results: Confidence Changes During Reasoning (Qwen)
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Baseline produces overconfident reasoning, while prompts and prefills induce humility toward class

labels—mirroring the Dunning-Kruger effect [31].




Contribution

Prefill-Guided Thinking

* A new way to elicit step-by-step reasoning from vision-language models for
zero-shot detection of Al-generated images.

* Up to 24% MacroF1l improvement across 16 state-of-the-art generators
* No training data required

+ Higher humility about class labels during reasoning leads to more accurate
detection

Under Review: ACL ARR
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