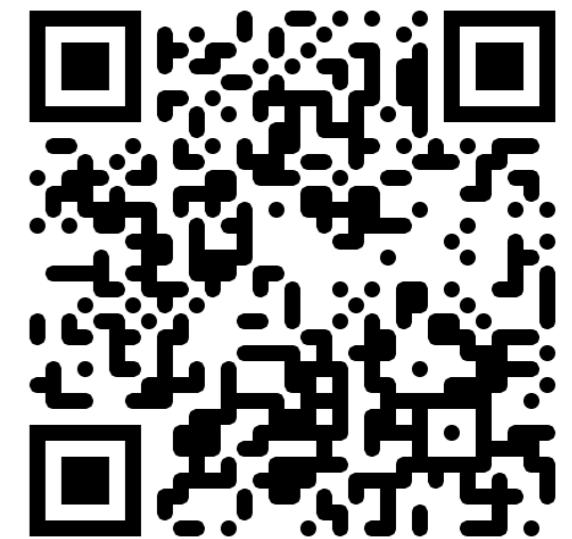
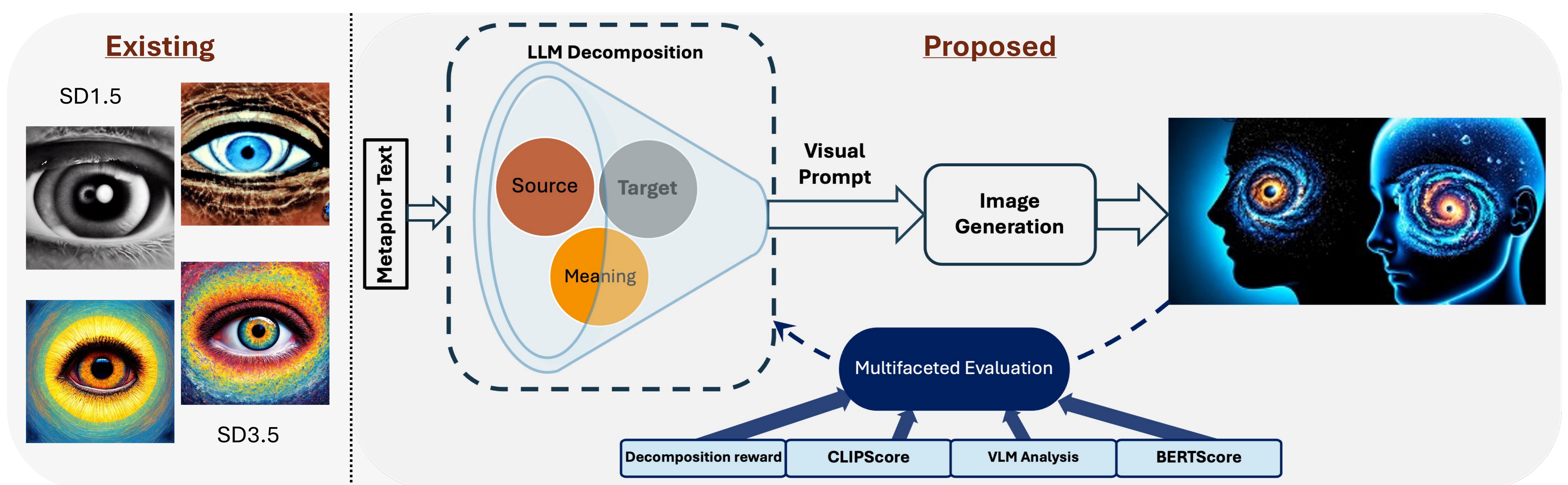


The Mind's Eye: A Multi-Faceted Reward Framework for Guiding Visual Metaphor Generation

Girish A. K.¹, Fatemeh N.¹, Katherine B.¹, Shenbin Q.², Diptesh K.¹

¹NICE Research Group & ²Centre for Translation Studies, University of Surrey, UK

{g.koushik, f.nazarieh, k.birch, s.qian, d.kanojia}@surrey.ac.uk



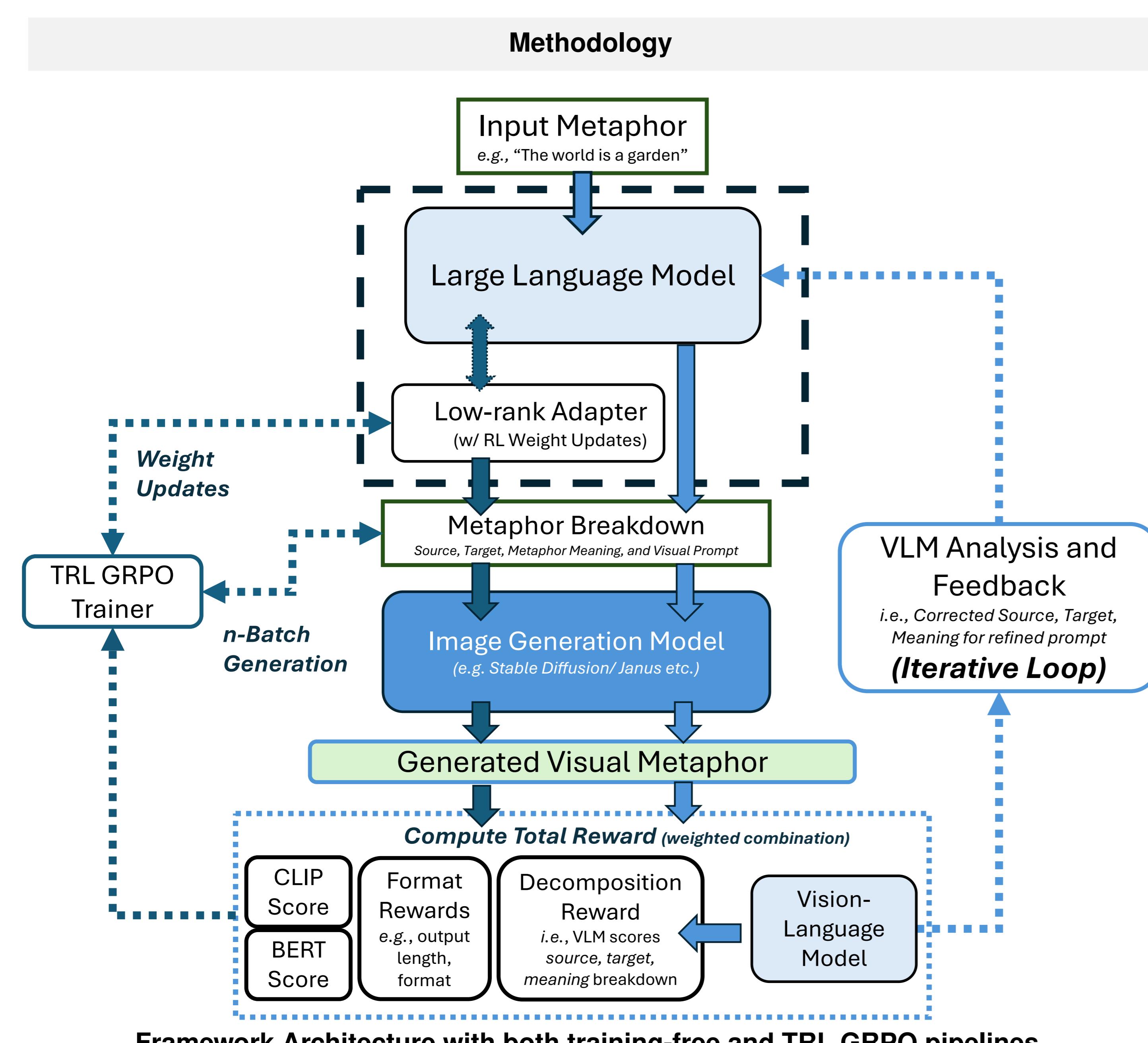
Background

Visual metaphors convey abstract ideas through images, yet current Text-to-Image (T2I) models like Stable Diffusion struggle with figurative meaning.

- **Shallow Interpretations:** Models default to literal visual elements, missing the metaphor. For example: "the mind's eye" yields a **literal eye** rather than a **depiction of imagination**.
- **Evaluation Gap:** Lack of robust metrics to assess if the visual captures the true metaphorical meaning.

Our framework addresses these challenges by:

- Recursively generating context via **meaning decomposition**.
- Evaluating generated images for figurative alignment.



Framework Architecture with both training-free and TRL GRPO pipelines.

We Introduce Two Complementary Pipelines

1. Training-Free Pipeline (In-Context Refinement)

This pipeline focuses on maximizing figurative alignment without any model fine-tuning, leveraging only the capabilities of large pre-trained LLMs.

- Employs an **Iterative Prompt Refinement** loop, where the LLM's weights remain **unchanged**.
- The LLM receives structured feedback (VLM scores, CLIP signals, and Meaning Alignment) through a **meta-prompt**, and generates a refined prompt P_{i+1} using In-Context Learning.
- The objective is to identify the optimal prompt P^* that maximizes the total reward within a fixed number of iterations:

$$P^* = \operatorname{argmax}_{P_i} R(G(P_i), P_i, D)$$

2. Fine-Tuned Pipeline (GRPO-based Refinement)

This pipeline targets efficiency and task specialization by fine-tuning a smaller model via Reinforcement Learning.

- Applies **Policy Optimization** using the **Group Relative Policy Optimization (GRPO)** algorithm, guided by a multi-component reward.
- Performs **Explicit Adaptation** by updating LoRA parameters ($L\theta$), enabling the model to maximize the expected reward $E[R(C)]$ for its generated decompositions and prompt candidates.
- Learns optimal parameters θ^* by minimizing the GRPO loss:

$$\theta^* = \operatorname{argmin}_{\theta} - E_{C \sim \mathcal{L}_{\theta}} \log \sigma_{\beta}(R(C) - R_{\text{ref}}(C))$$

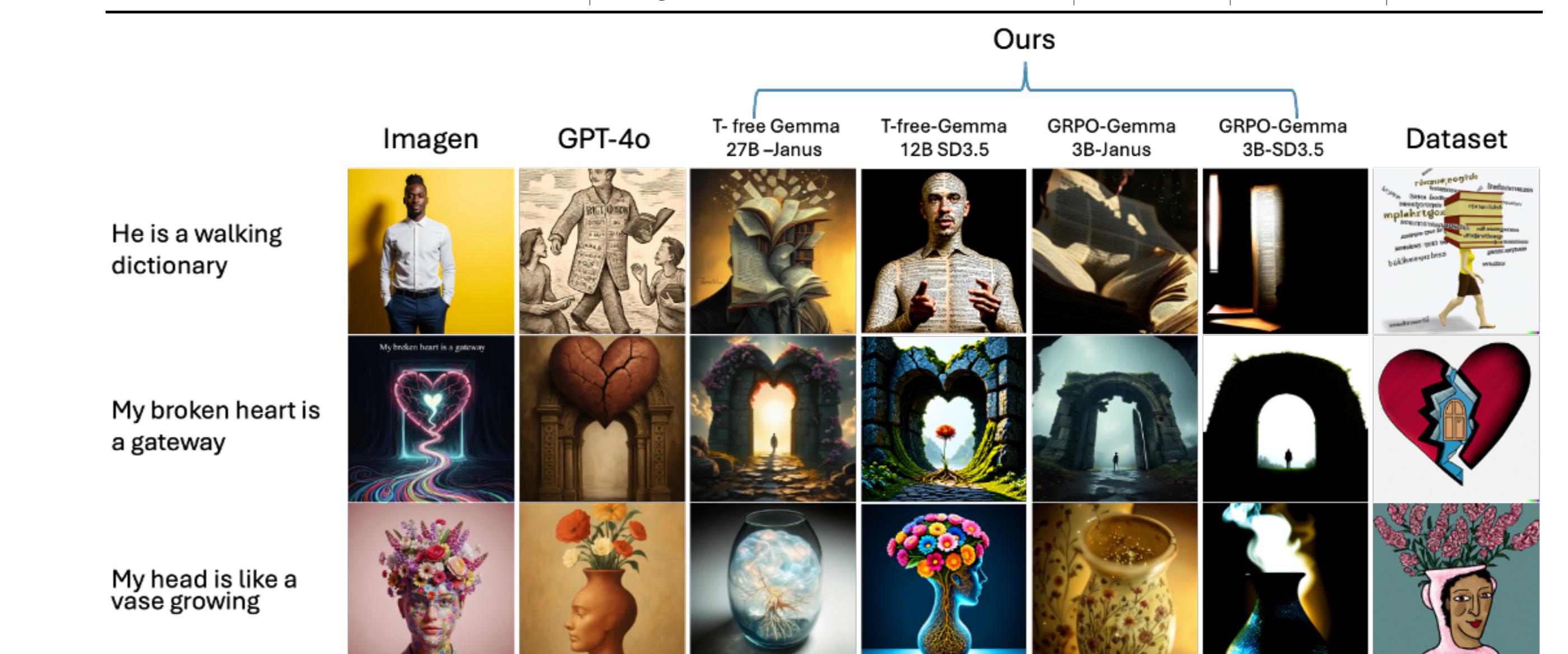
3. S-T-M: Source, Target, Meaning

- **Source (S):** The concrete concept the metaphor draws from. For example: "a garden" in "The world is a garden."
- **Target (T):** The concept we aim to understand, usually more abstract or complex, onto which we map the structure of the source. For example: "the world."
- **Meaning (M):** The connection linking S to T, the intended interpretation. For example: "The world has potential and needs care."

Results and Discussion

Combined quantitative evaluation. All metrics are in the range $[0, 1]$ with higher values indicating better alignment, on dataset, **HAIVMet**

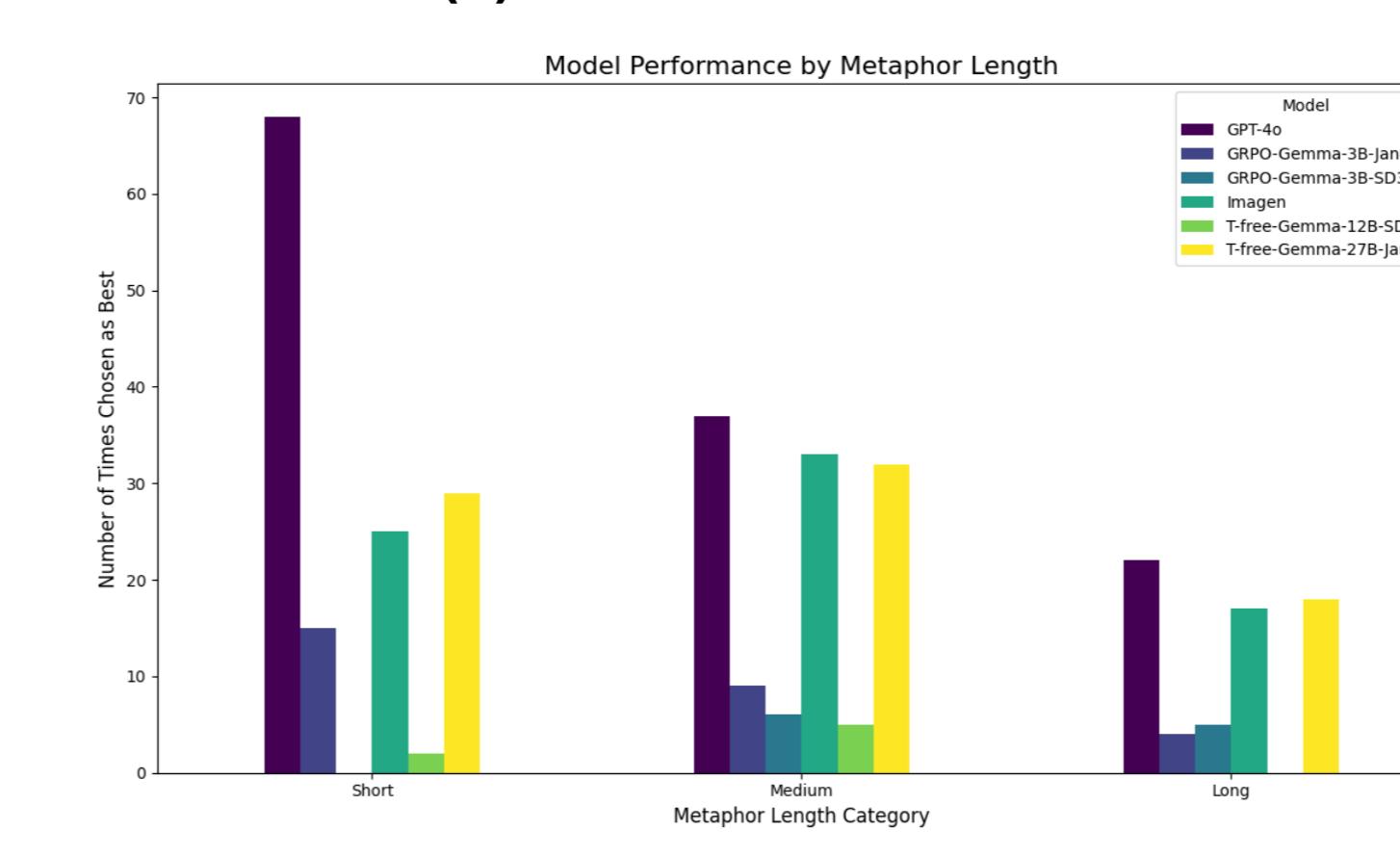
Architecture / Model	Key Configuration	CLIP Score (\uparrow)	MA Score (\uparrow)	Decomp. Score (\uparrow)
Training-Free	GEMMA-27B / Janus-Pro	0.2960	0.8760	0.8668
Fine-Tuned (GRPO)	GEMMA-4B / SD [‡] / QWEN-32B	0.2789	0.6396	0.6480
Zero-Shot Baseline	GPT-4O	0.2296	0.8180	0.8072
Zero-Shot Baseline	Imagen-3	0.2224	0.7353	—



Examples from user study for evaluating metaphorical image generation.



(a) Best Model Overall



(b) Performance by Length

Figure: Best Overall Model and Model Performance with respect to Metaphor Length.

Quantitative Evaluation

1. Training-free pipeline (GEMMA-3-27B, Janus-Pro-7B, QWEN2.5-VL-32B): Achieves best CLIP (0.296) and Meaning Alignment (0.8760).
2. GRPO fine-tuned model achieves competitive results with smaller backbone.

► **Qualitative Evaluation** We conduct a user Study (15 annotators, 50 metaphors). Each evaluation sample contained six images (GPT-4o, Imagen-3, two training-free models, and two GRPO models), totaling 300 images for human assessment.

1. GPT-4o preferred overall. We believe this is due to the image quality and presentation rather than the actual semantics of metaphor understanding.
2. Overall, the training-free pipeline ranked 2nd in the user study.

Conclusion

- We introduce a metaphor-aware image generation framework that combines structured decomposition and multi-faceted reward.
- **Training-free** and **GRPO fine-tuned** approaches both outperform zero-shot baselines.
- Structured S-T-M decomposition improves semantic alignment between metaphoric prompt with the metaphoric image.