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ShrutiSense: Microtonal Modeling and

Correction in Indian Classical Music

Introduction

Indian classical music represents on of the world’s most sophisticated
microtonal systems, employing 22 distinct pitch intervals called Shrutis
within each octave. Unlike Western music’s 12-tone equal temperament,
this system provides finer granular control over pitch relationships, enabling
the subtle melodic ornamentations and emotional expressions that
characterize ragas. This concept of Shruti, first formalized in Bharata's
Natya Shastra, divides the octave into 22 mathematically precise intervals,
each serving specific melodic and emotional functions with different raga
contexts.

Mathematical Foundations

We formalize the 22-Shrut system as a logarithmic frequency division of the
octave, following the theoretical framework established by Bhatkhande, with
cent values. We then model each raga as a directed graph G = (S, T),
where S is the set of Shruti positions and T which a subset of S X S
represents permissible transitions between Shrutis. The
Grammar-Constrained Shruti Hidden Markov Model (GC-SHMM) is defined
over a state space S, where N represents the number of active Shrutis in a
give raga. Emission probabilities are modeled using Gaussian distributions.
A key feature of GC-SHMM is its enforcement of raga grammar through
constrained transitions, and it uses Viterbi algorithm to identify the most
probable Shruti sequence. The Shruti-aware Finite-State Transducer (FST),
maps input pitch sequences to corrected or completed outputs by applying
weighted edit operations. The GC-SHMM algorithm operates with a time
complexity of O(TN”2), where T denotes the sequence of length and N the
number of active states, and a space complexity of O(TN). In contrast, the
Finite-State Transducer (FST) approach exhibits a time complexity of
O(TM”2) with lattice size M.

Limitations

Despite promising results, current limitations include reliance on pre-defined
raga grammars, assumption of monophonic input, limited modeling of
ornamental nuances, and the requirement for tonic identification. Future
work will focus on adaptive raga learning through unsupervised corpus
analysis, end-to-end audio integration with robust pitch estimation for noisy
iInputs, expanded ornament modeling that treats gamakas and other
microtonal inflections as first-class entities, and multi-voice extensions to
handle drones and polyphonic textures common in Indian classical
ensembles. We also envision cross-cultural adaptation to diverse microtonal
traditions such as Carnatic music, Middle Eastern magam systems, and
contemporary non-Western composition practices.
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Experimental Evaluation and Results

Correction Task Performance

Table 1: Pitch Correction Performance Comparison (Yaman Raga, Corruption = 0.4)

Method Shruti Acc. (%) Mean Error (cents) Time (ms)

GC-SHMM 84.0 + 0.4 107.6 + 3.6 12.5 £ 0.3
Shrut1 FST 91.3+0.2 45.6 £ 1.4 0.1
Nearest Cent 89.4 + 0.3 518+ 14 0.1
Random 126 £ 0.3 4526 =24 0.0

The statistical analysis reveals strong and significant differences in accuracy
across the models evaluated. Pairwise comparisons show that both FST and

Nearest Cent outperform HMM, while all structured models far exceed the
random baseline. The Cohen’s d values outputted by the evaluation code
indicate large effect sizes for each contrast, especially against random, with
FST showing the greatest improvement. A one-way ANOVA further confirms
significant disparities among models with an exceptionally high F-statistic.
Overall, the findings suggest that FST is the most accurate model, followed
closely by nearest cent, while HMM lags behind but still vastly outperforms
random. Thus, when users choose to use ShrutiSense to correct an audio
file, the audio-file will go through the FST pipeline.

Completion Task Performance

Table 2: Melodic Completion Performance by Missing Pattern

Missing Pattern HMM FST

Acc. Error (cents) Acc. Error (cents)
Random D Pl 203.0 62.6 158.7
Clustered 40.3 344.9 26.6 317.0
Structured 82.9 48.5 70.5 228.1

As the completion task is not generally a real-world use case, we deemed it
unnecessary to compare it against baseline models. The statistics for the
completion task are displayed in Figure 2. Clearly, the correction task is
much easier for ShrutiSense than the completion task, which is expected.
Overall, the HMM performed better with a mean accuracy of 60.1 £ 30.9%
vs the FST which had a mean accuracy of 48.6 £ 22.2%. That being said,
the FST actually beat the HMM for the Bhairava (0.2 corruption), the Bilawal
(0.2 corruption), and the Khamaaj (0.2 corruption), showing that the FST
actually does as good if not better than the HMM when corruption is low.
Additionally, the completion error distribution was much less spread out for
the FST than the HMM. The FST was significantly faster than the HMM, as
expected because of the differences in algorithmic complexity.
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Robustness Analysis

Noise resilience testing demonstrates that ShrutiSense (FST model)
maintains an average accuracy of 91.3% with input noise up to +50 cents,
as introduced by quantization corruption. Example sequences at corruption
levels of 0.2 to 0.4 show FST accuracies ranging from 86.7% to 90.0%.
Performance degrades gracefully at higher corruption levels, maintaining
accuracy around 86.7% at 0.4 corruption. The system exhibits consistent
performance across ragas, with minor variations: Yaman (91.1% accuracy),
Bhairavi (90.7%), Bilaval (91.2%), Kalyan (91.8%), and Khamaaj (91.8%).
These results, derived from 900 simulations across sequence lengths of 30,
50, and 100, validate the generalizability of the grammar-based approach.
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