Multimodal Data Foundation at Industry Scale

Hu Xu and Shang-Wen Li

About Us

- Research Scientist, FAIR, Meta.
- Foundational Data Research
- Leads Meta CLIP, VideoCLIP etc.
- Foundation for Llama, DINO, Perception Encoder, SAM 3, Web-SSL, Smart Glasses etc.

Motivation

- Share with the community our observations and insights on data.
- Why data matters as a foundation for research.

MLLM

Llama 3

Llama 3

Segmentation

Llama 3

SAM 3

Llama 3

SAM 3

Vision Encoding

Llama 3

SAM 3

DINO/Perception Encoder

Llama 3

SAM 3

DINO/Perception Encoder

Video Generation

Llama 3

SAM 3

DINO/Perception Encoder

MovieGen

Llama 3

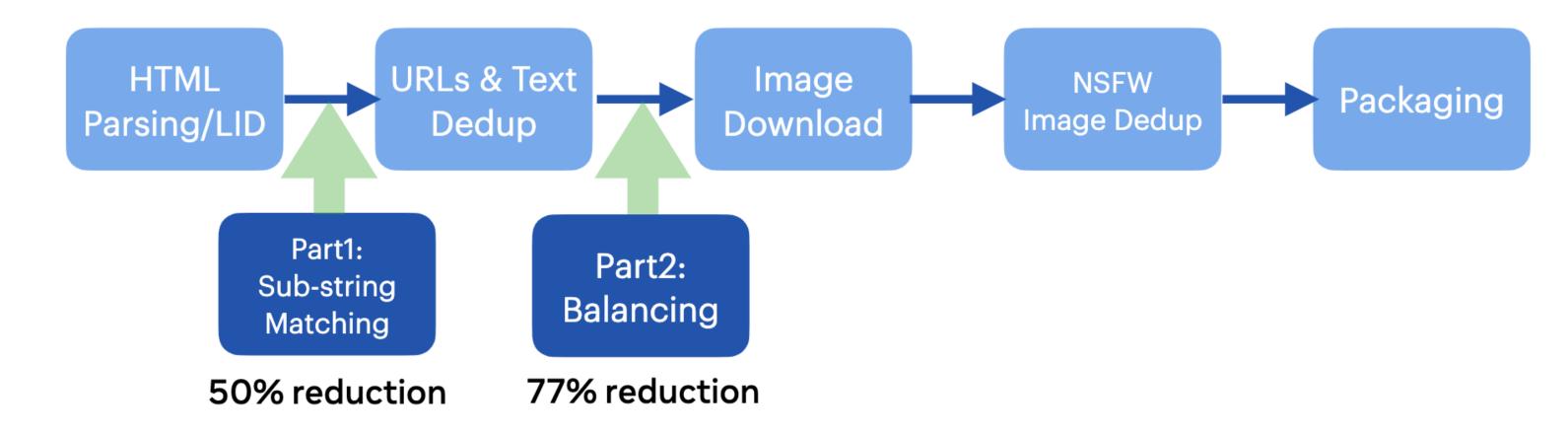
SAM 3

DINO/Perception Encoder

MovieGen

Recommendation

Meta CLIP



Data pipeline built from scratch, processing 100B+ scale image-text pairs.

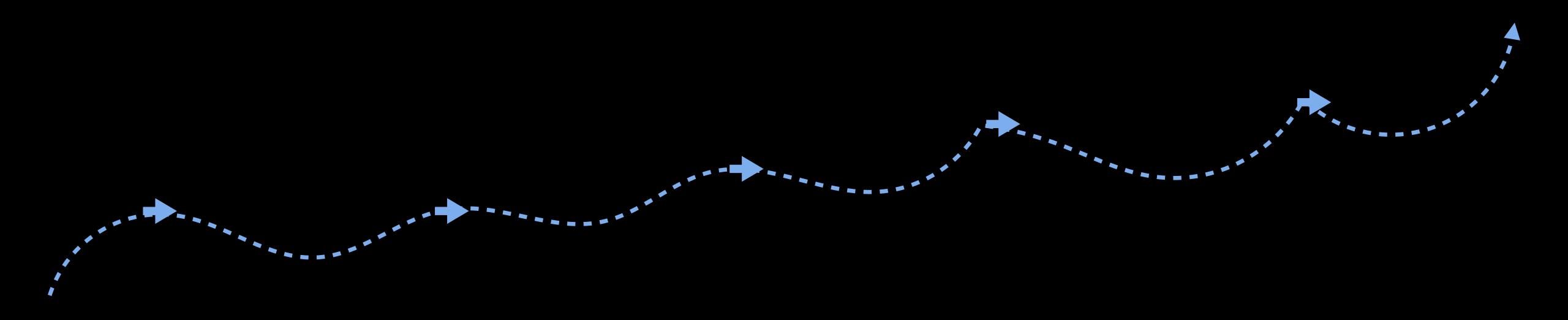
Outline

- Data, Supervision and Bottleneck
- Meta CLIP
- Meta CLIP 2
- Future Bottlenecks (Our Estimation)

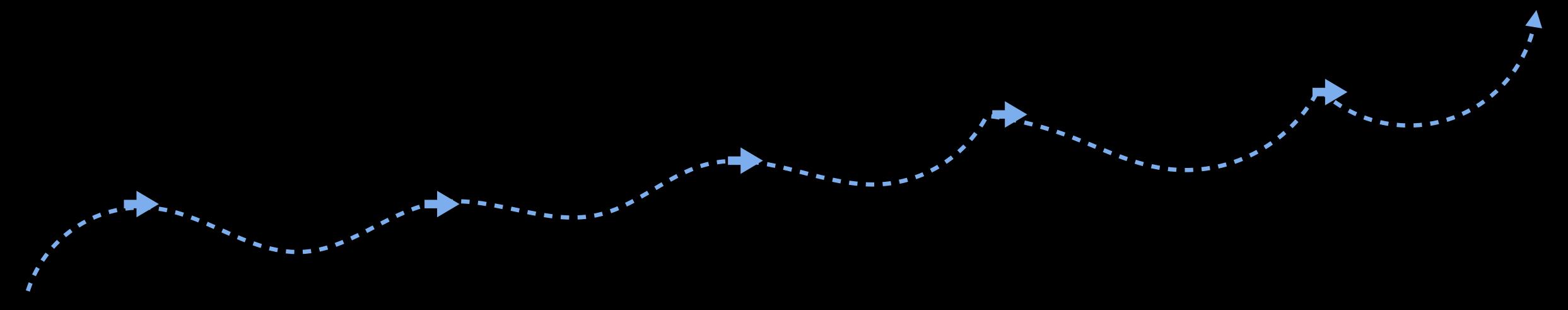
01 Data, Supervision and Bottleneck

What is Data?

History of ALL Processes Ordered by Timestamp



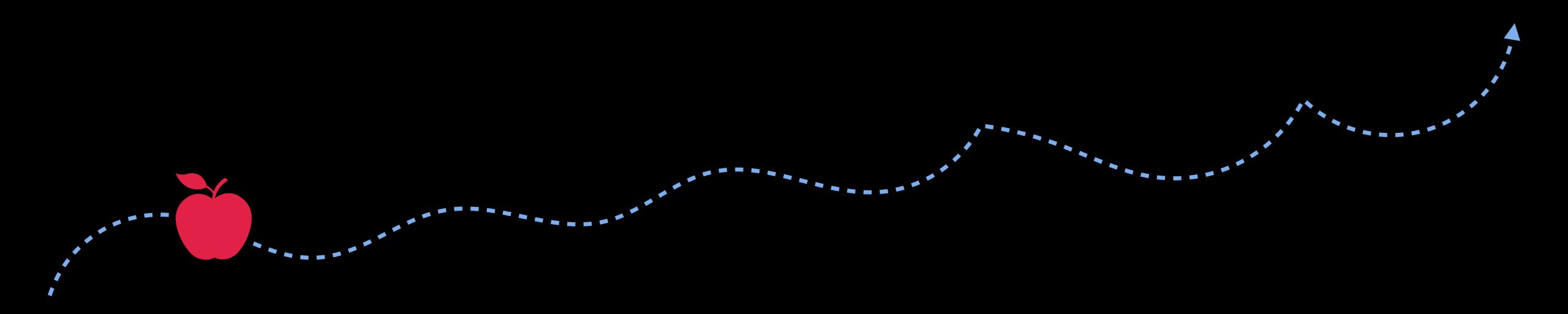
History of ALL Processes Ordered by Timestamp



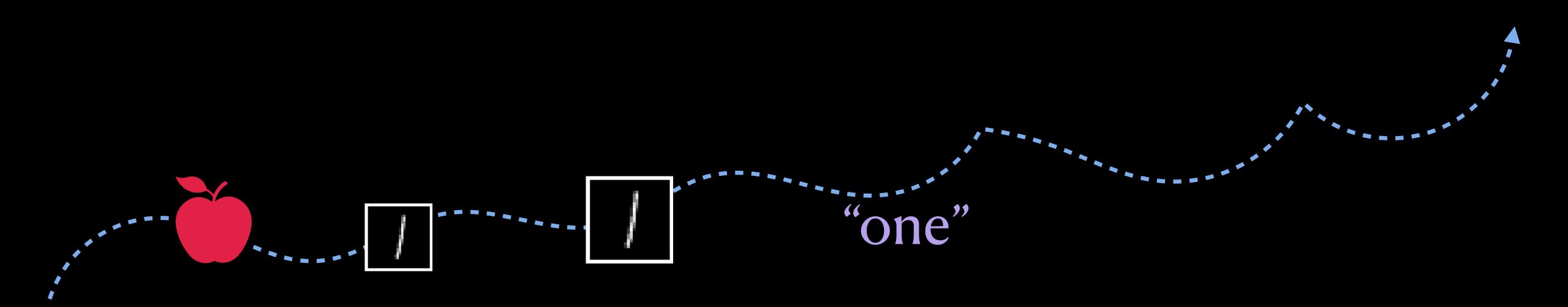
"You cannot step into the same river twice."

Heraclitus

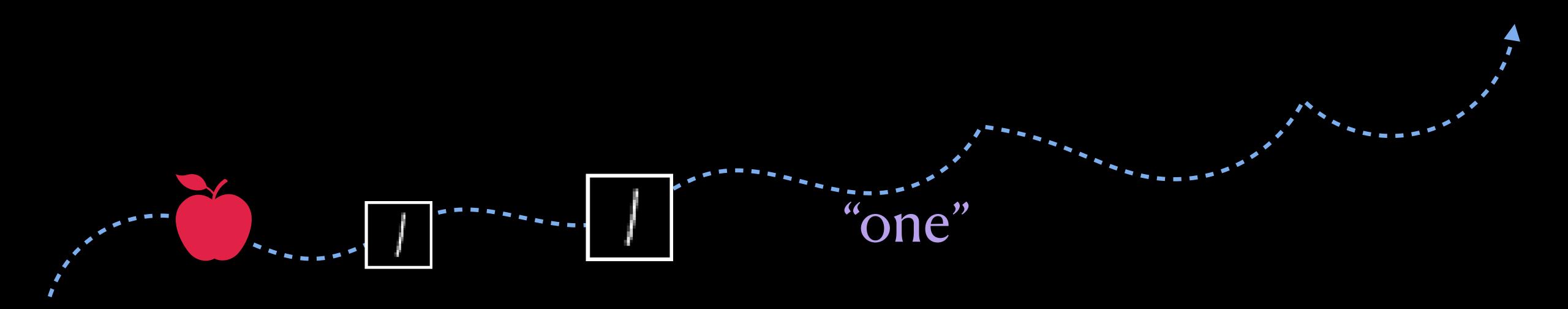
Observation



After some Hidden Processes, More Observation

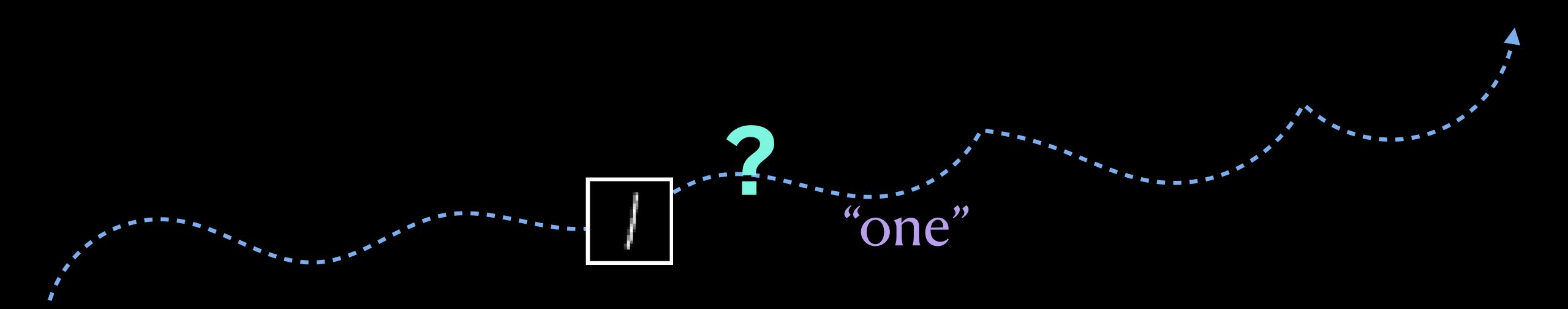


After some Hidden Processes, More Observation

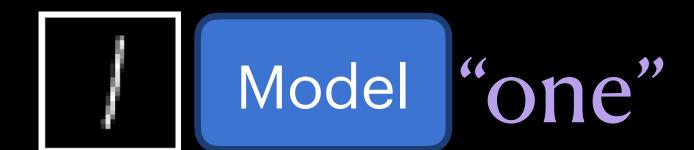


Data are partial observations.

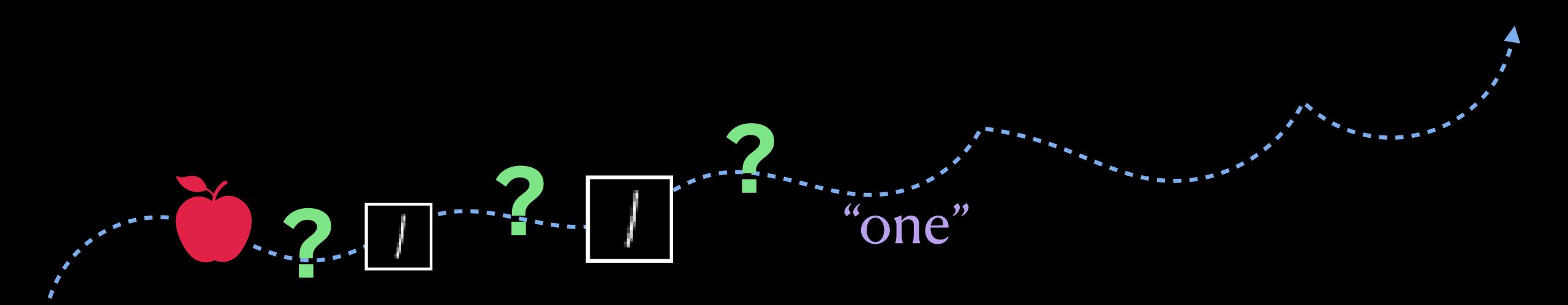
From Processes with Hidden Structures



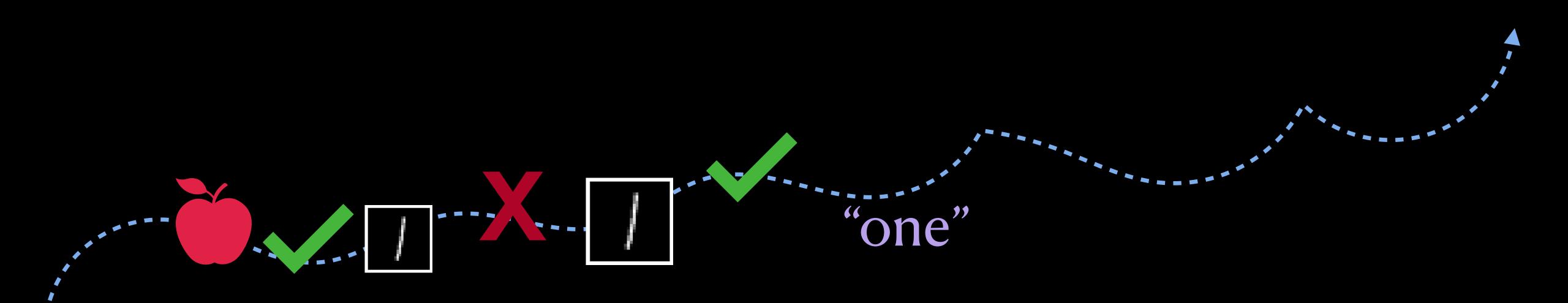
To a Model (that Approximates the Hidden Structure)



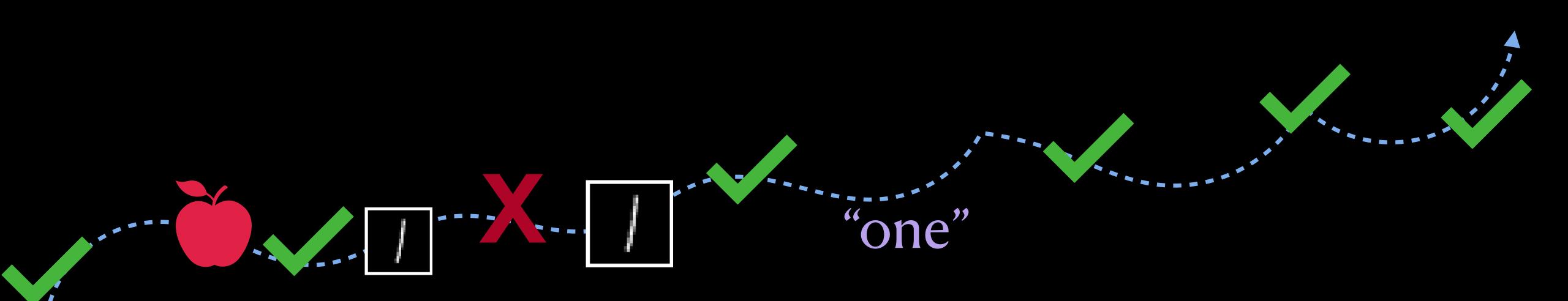
Processes are NOT Equally Valuable



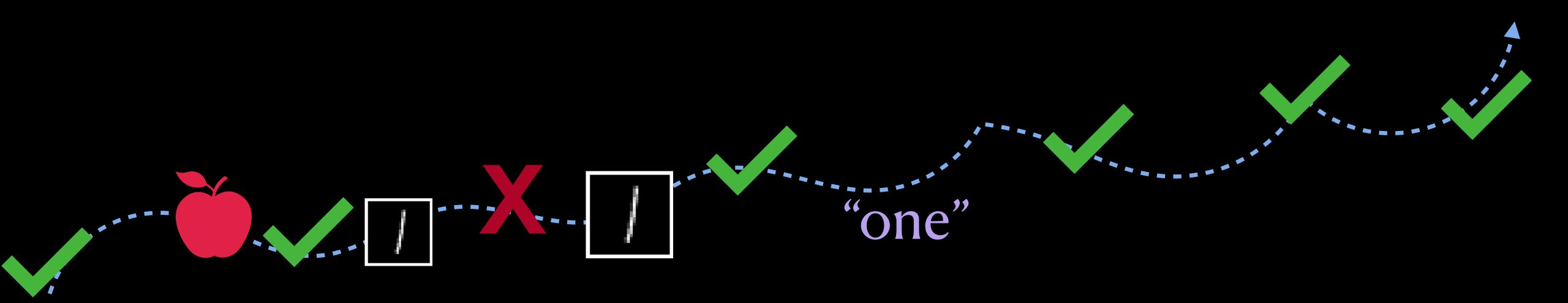
Select Processes with Dense Supervision?



Scaling Processes with Dense Supervision?

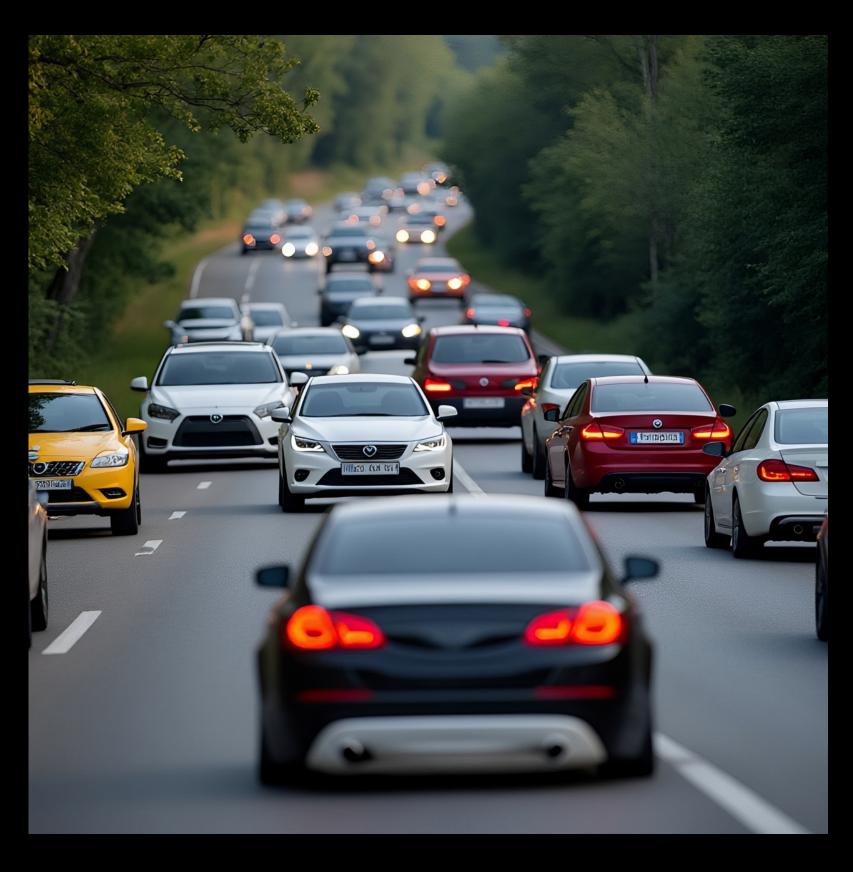


Scaling Processes with Dense Supervision?



Resources are always limited; cannot scale arbitrarily !!!

What is Bottleneck and Why Finding it Matters?



Bottleneck of Al

- (1990s-late 2000s)
- Big Data
- Small Model
- SVM's fixed non-linear kernel

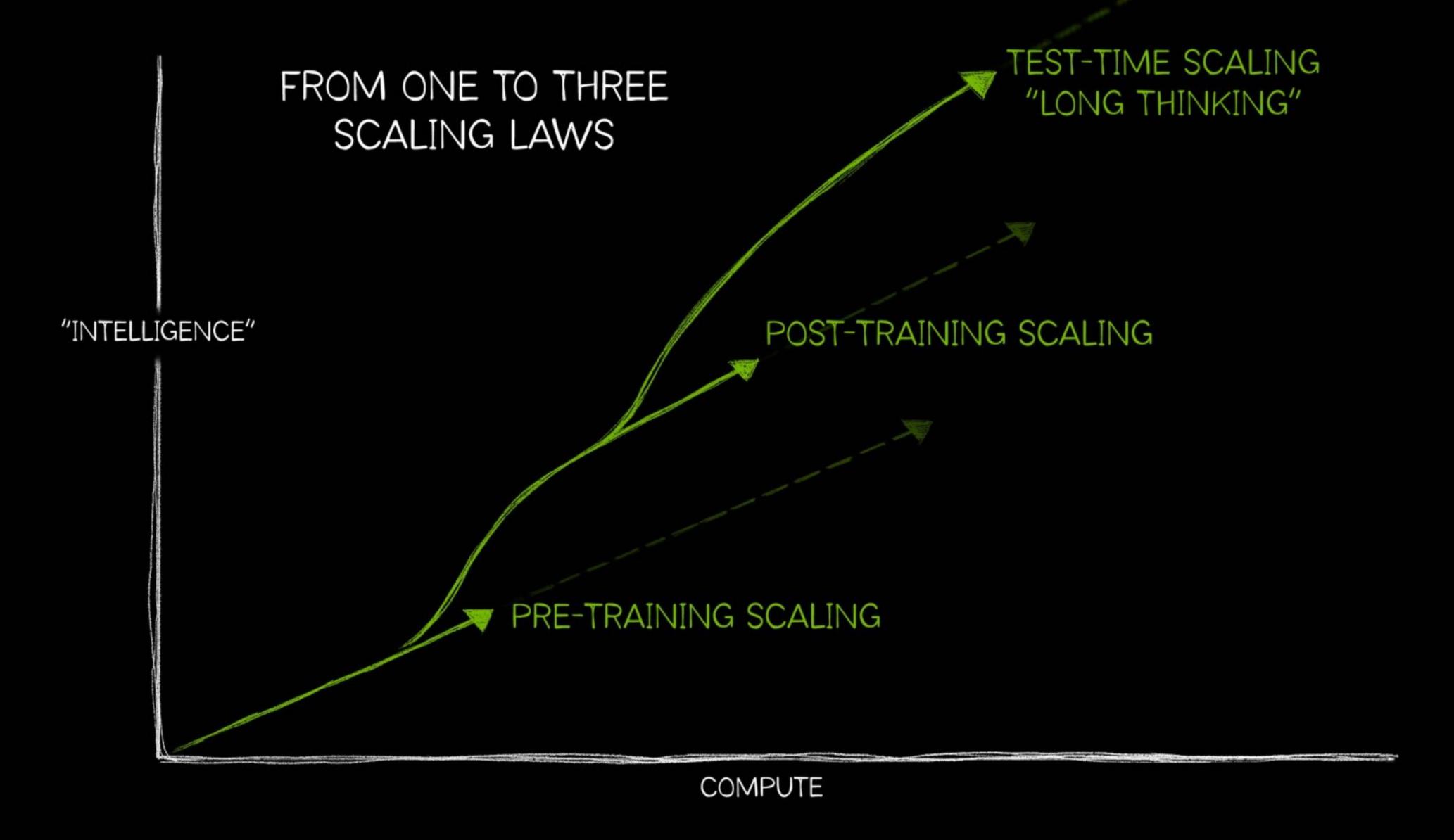
Bottleneck of Al

- (2012~2025)
- Big Model (Neural Network)
- Learnable Non-linear Transformation
- More data?

Bottleneck of Al

- (2012~2025)
- Big Model (Neural Network)
- Learnable Non-linear Transformation
- Data Filters and Data Walls ?

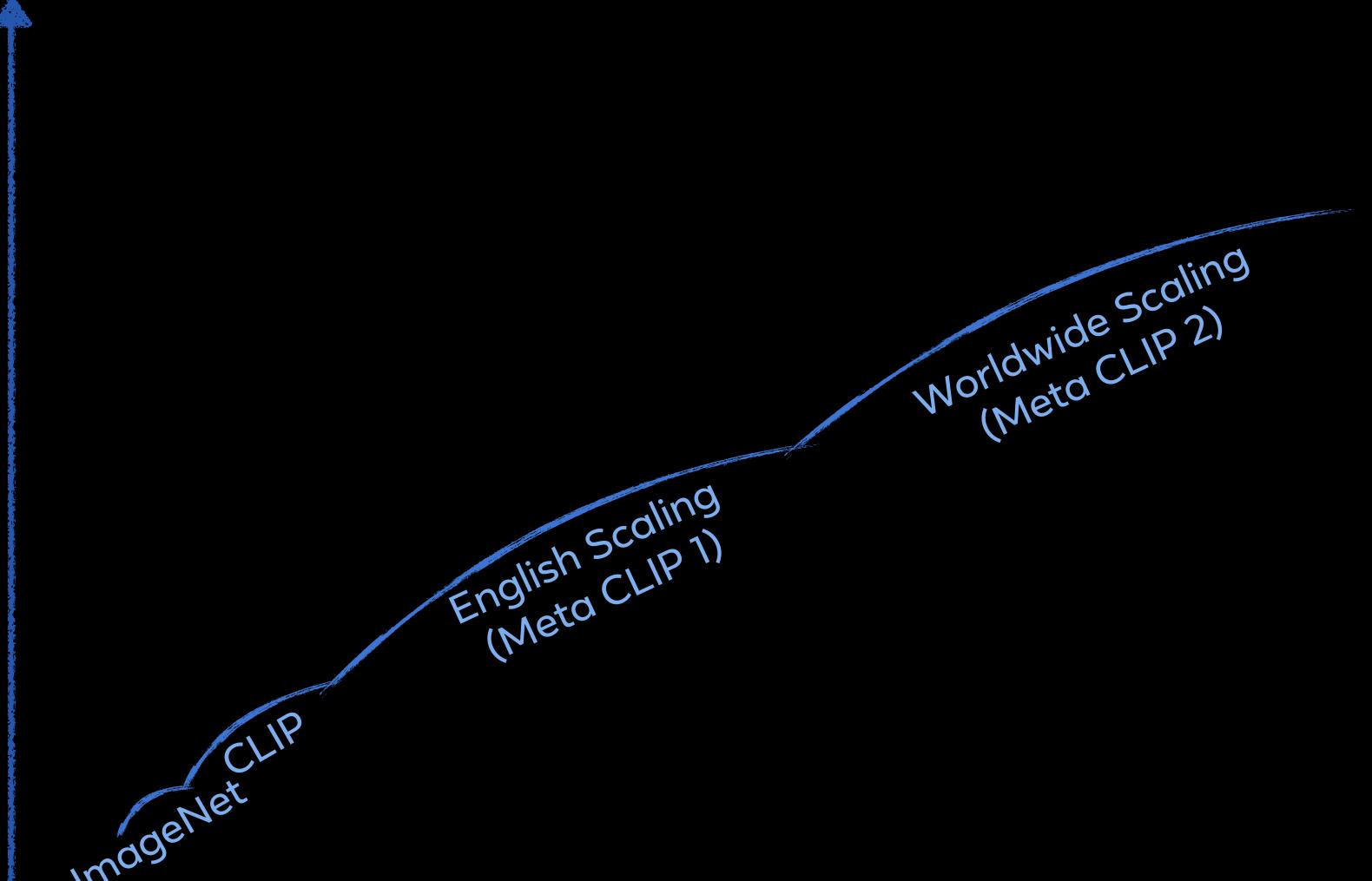
(Inspired by Jensen's Compute Scaling Law ...)

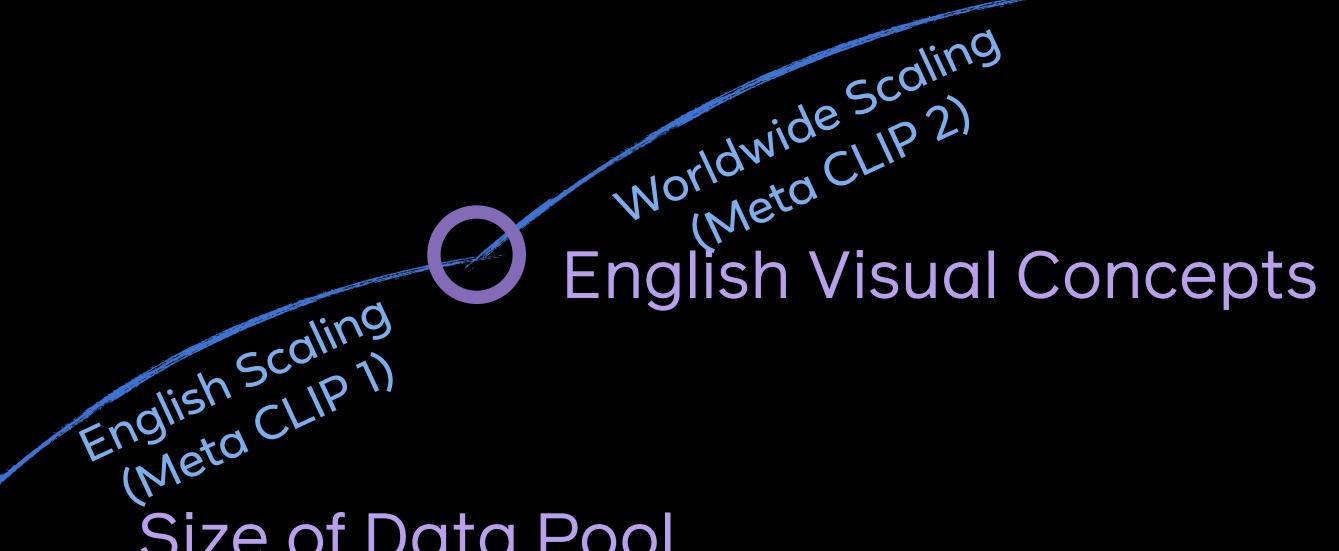


mageNer

mageNet

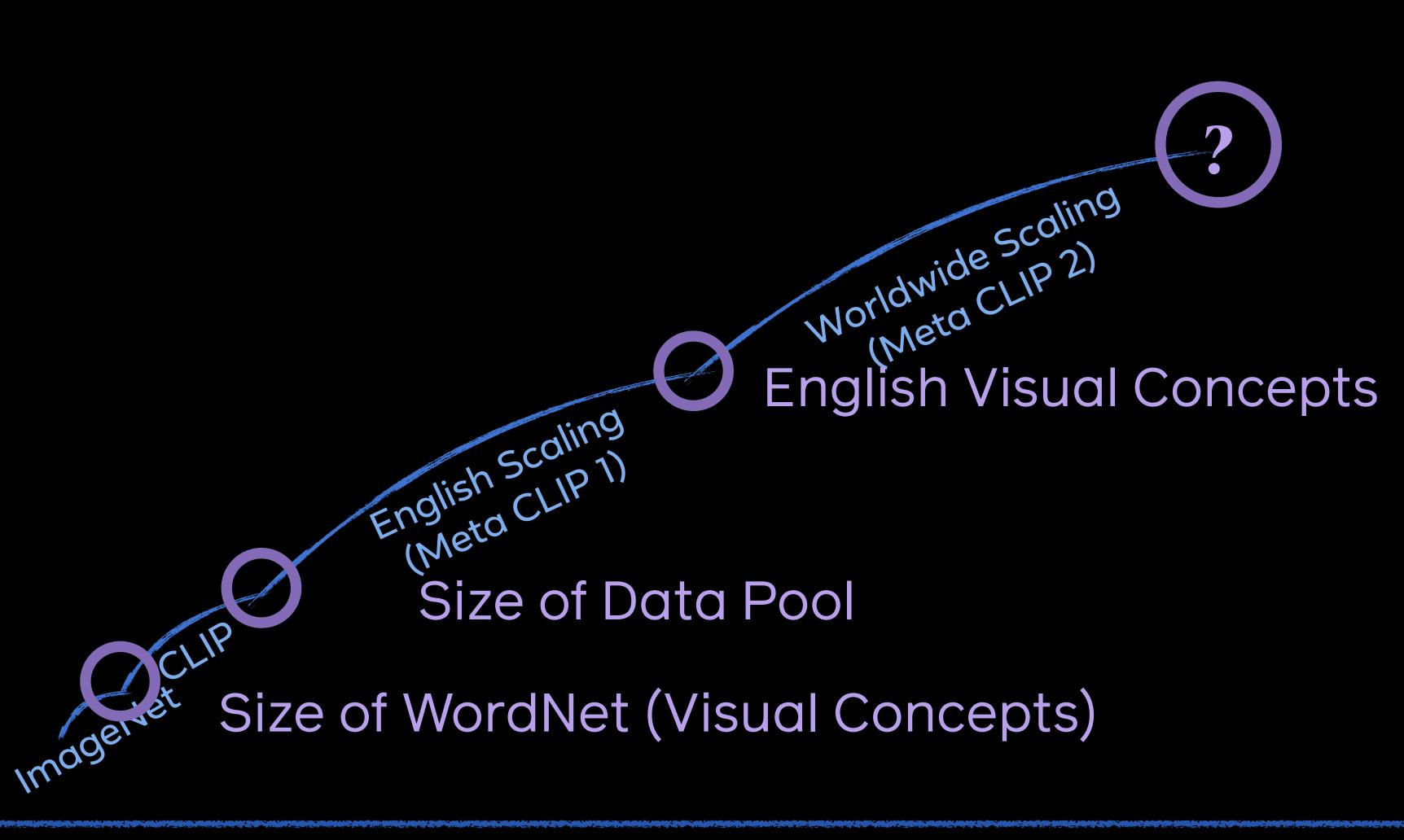
English Scaling
(Meta CLIP 1)





Size of Data Pool

Size of WordNet (Visual Concepts)



02 Meta CLIP

- A formal data algorithm:
- no OpenAl or Google Image Search dependency;

- A formal data algorithm:
- no OpenAl or Google Image Search dependency;
- Scaling CLIP data to billions from all CommonCrawl image-text pairs;
- Dense Concept Supervision.

- A formal data algorithm:
- no OpenAl or Google Image Search dependency;
- Scaling CLIP data to billions from all CommonCrawl image-text pairs;
- Dense Concept Supervision, wide adoption by research and production.
- No Filter Philosophy:
- CLIP filter / file name filter / date filter etc. are unnecessary or harmful;
- Short-term gains, long-term bottlenecks: bitter lessons.

- A formal data algorithm:
- no OpenAl or Google Image Search dependency;
- Scaling CLIP data to billions from all CommonCrawl image-text pairs;
- Dense Concept Supervision, wide adoption by research and production.
- No Filter Philosophy:
- CLIP filter / file name filter / date filter etc. are unnecessary or harmful;
- Short-term gains, long-term bottlenecks: bitter lessons.
- Online Curation: training-on-distribution:
- NOT a finite dataset.

From a Description in CLIP paper

66

To address this, we constructed a new dataset of 400 million (image, text) pairs collected from a variety of publicly available sources on the Internet. To attempt to cover as broad a set of visual concepts as possible, we *search* for (image, text) pairs as part of the construction process whose text includes one of a set of 500,000 queries We approximately class balance the results by including *up to 20,000 (image, text) pairs per query*.

22

To Data Algorithm

Algorithm 1: Pseudo-code of Curation Algorithm in Python/NumPy style.

```
# D: raw image-text pairs;
# M: metadata;
# t: max matches per entry in metadata;
# D_star: curated image-text pairs;
D_star = []
# Part 1: sub-string matching: store entry indexes in text.matched_entry_ids and
    output counts per entry in entry_count.
entry_count = substr_matching(D, M)
# Part 2: balancing via indepenent sampling
entry_count[entry_count < t] = t</pre>
entry_prob = t / entry_count
for image, text in D:
   for entry_id in text.matched_entry_ids:
      if random.random() < entry_prob[entry_id]:</pre>
         D_star.append((image, text))
         break
```

To Data Algorithm

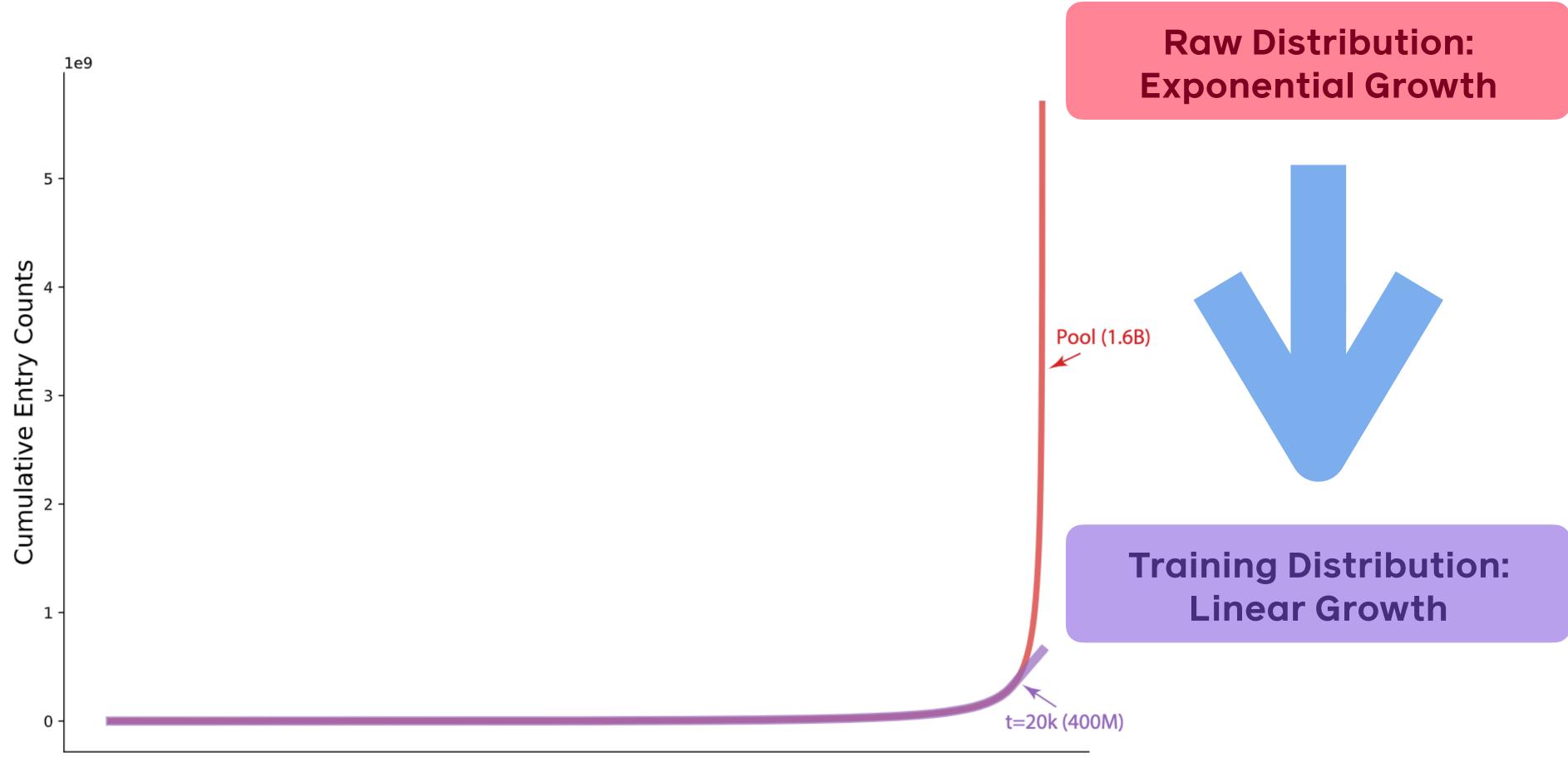
Global Operation

Algorithm 1: Pseudo-code of Curation Algorithm in Python/NumPy style.

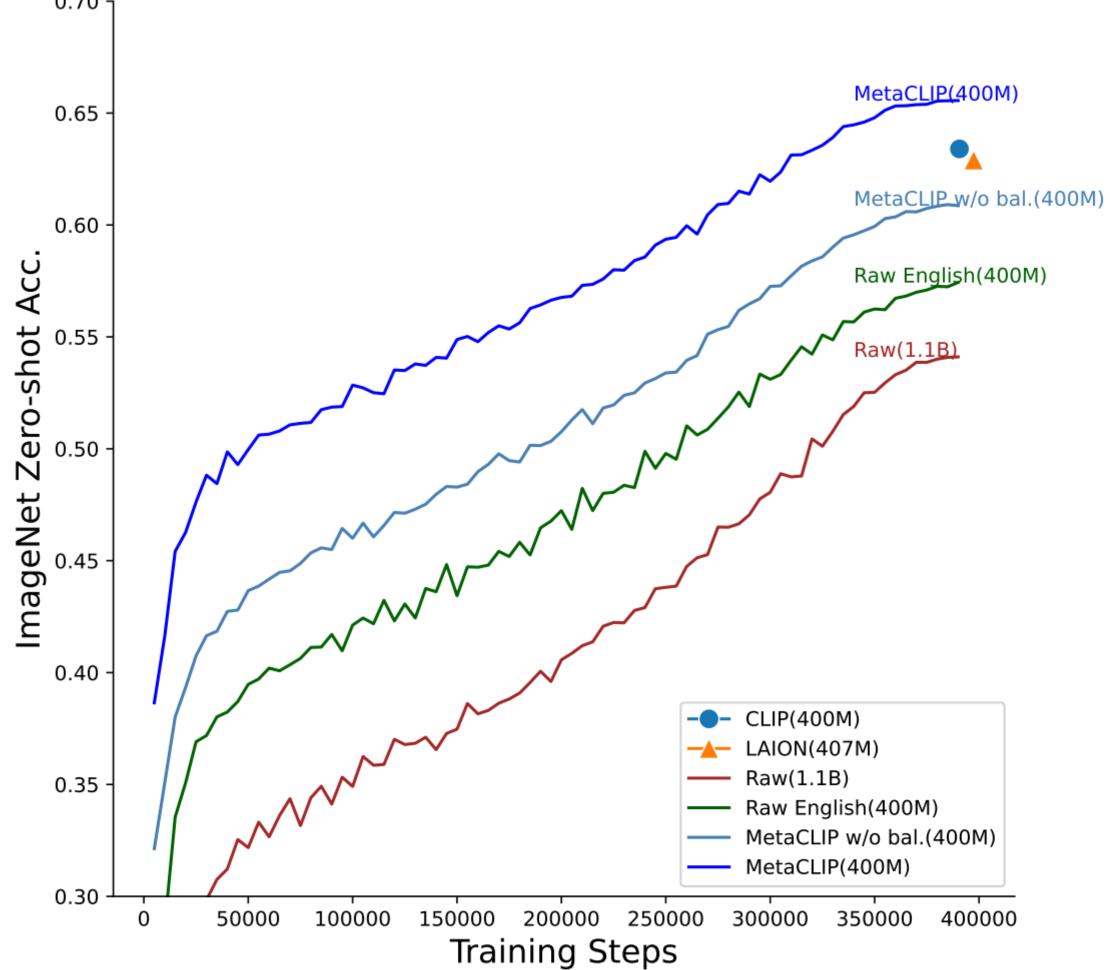
```
# D: raw image-text pairs;
# M: metadata;
# t: max matches per entry in metadata;
# D_star: curated image-text pairs;
D_star = []
# Part 1: sub-string matching: store entry indexes in text.matched_entry_ids and
     output counts per entry in entry_count.
entry_count = substr_matching(D, M)
# Part 2: balancing via indepenent sampling
entry_count[entry_count < t] = t
entry_prob = t / entry_count
for image, text in D:
   for entry_id in text.matched_entry_ids:
      if random.random() < entry_prob[entry_id]:</pre>
         D_star.append((image, text))
         break
```

• Minimal global operation, mostly async operations to scale on workers.

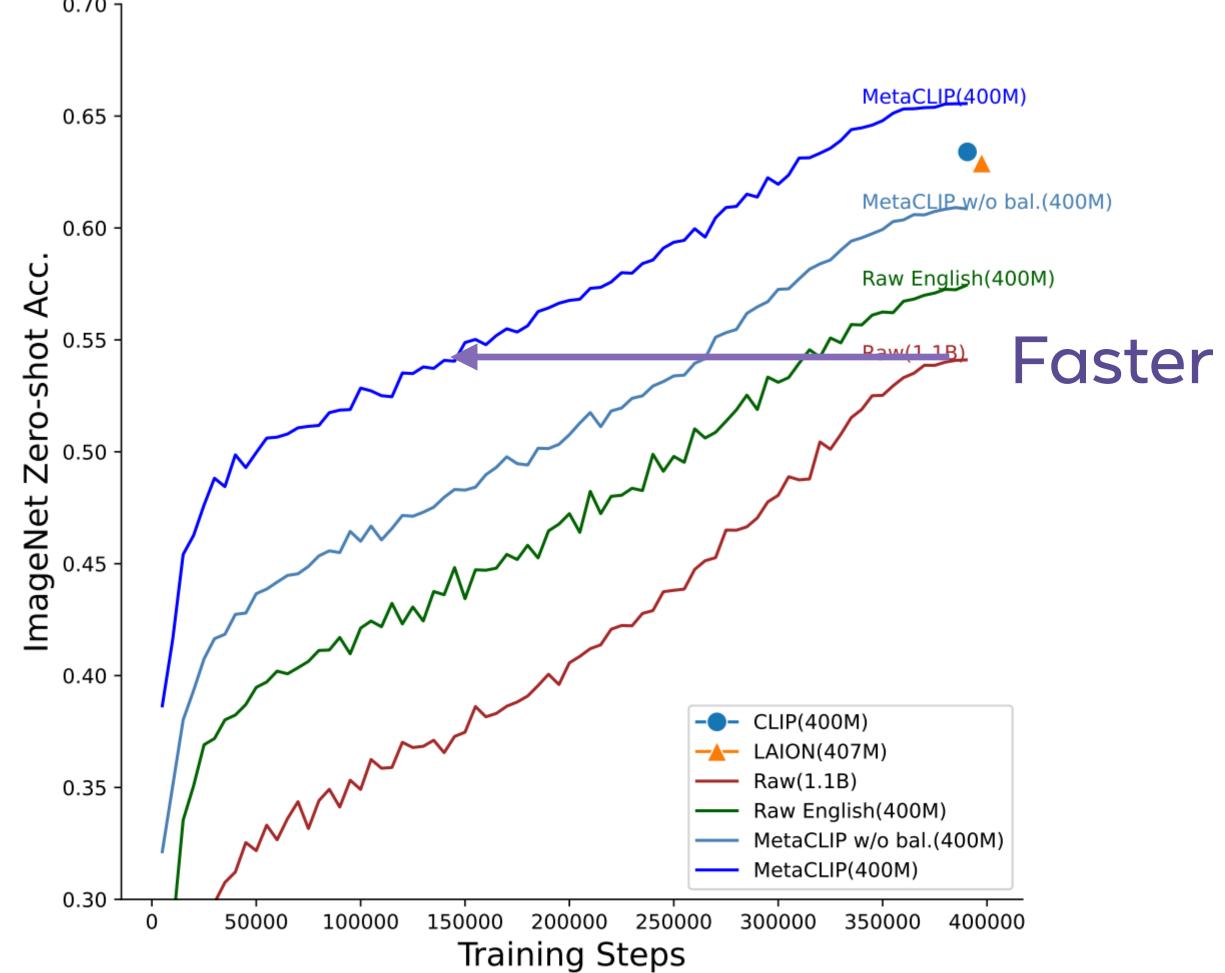
Balancing



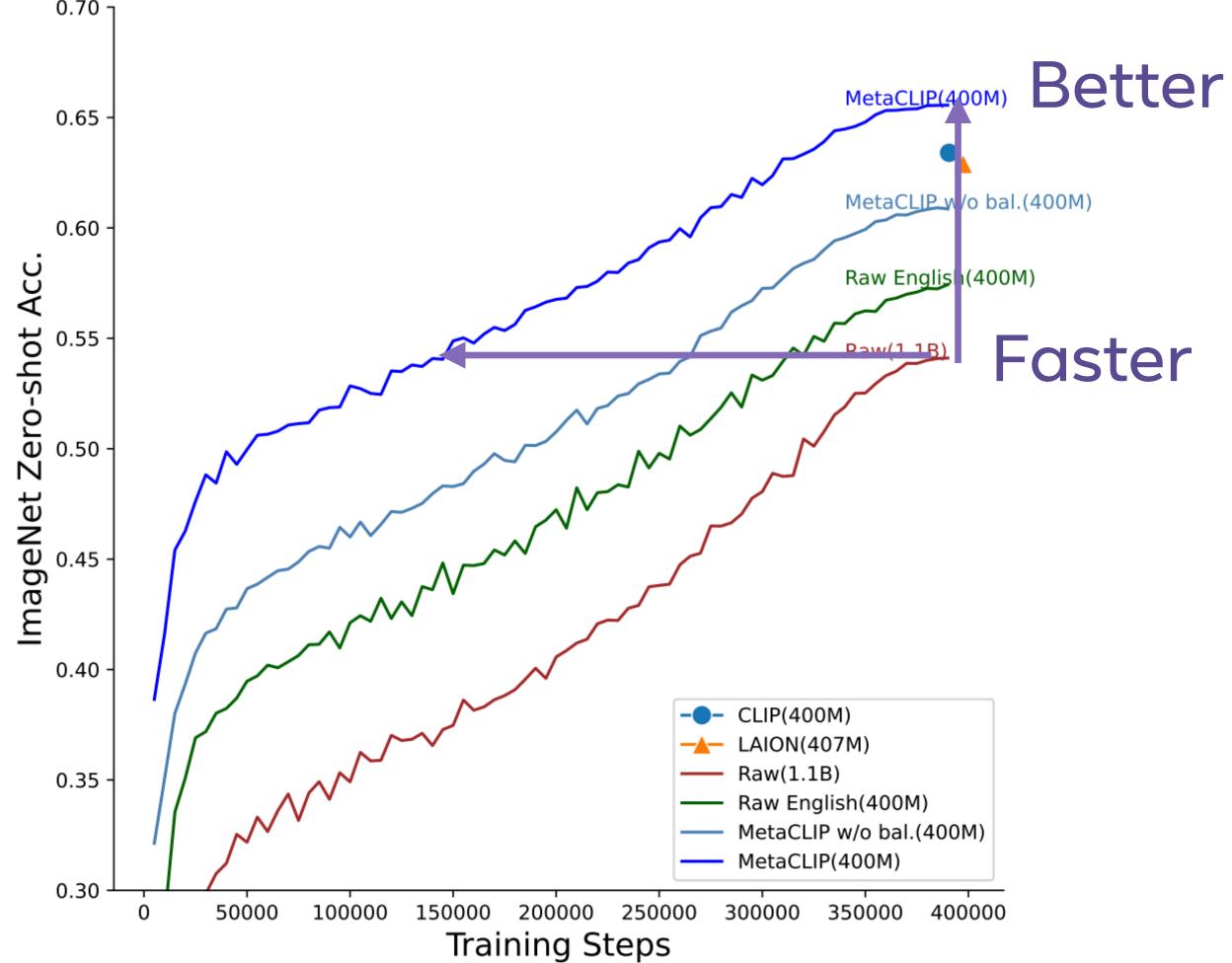
Bending the Curve



Bending the Curve



Bending the Curve



03 Meta CLIP 2

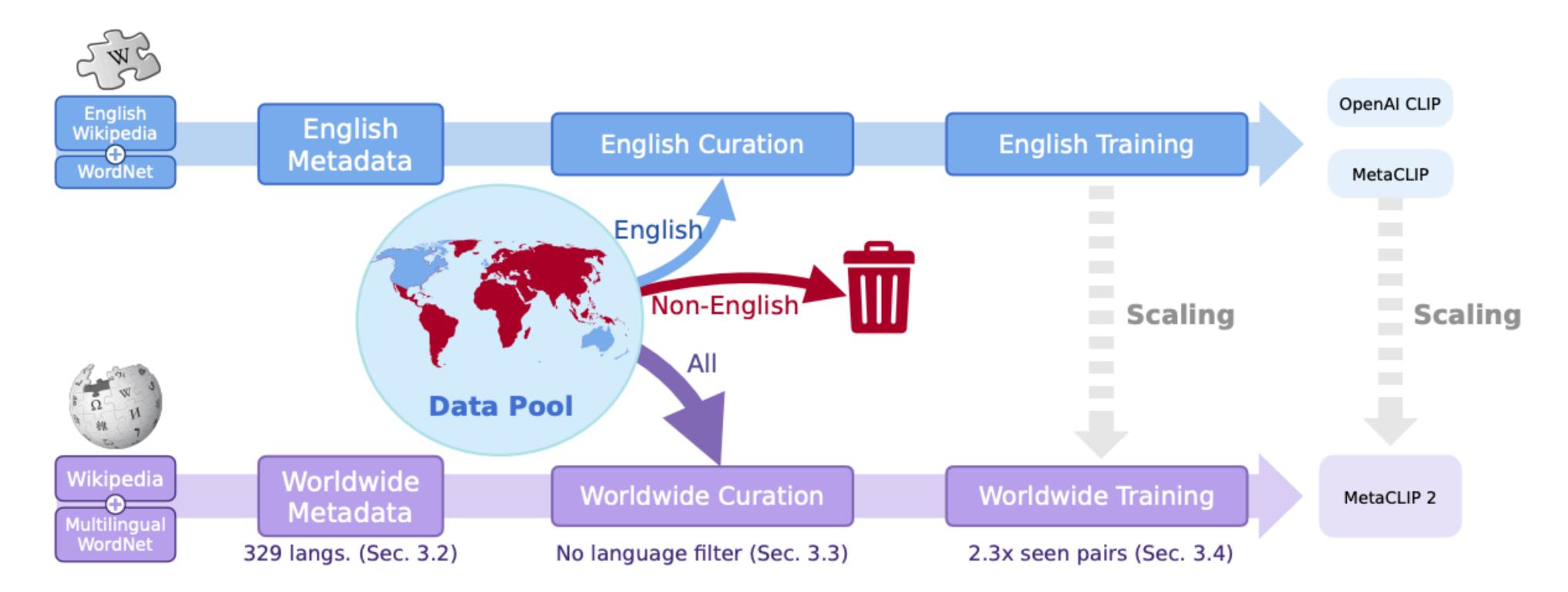
Motivation

- CLIP is English only, with an implicit English filter on data.
- Dropped 50%+ non-English pairs.
- Curse of Multilinguality:
- eg English performance in mSigLIP is worse than SigLIP;

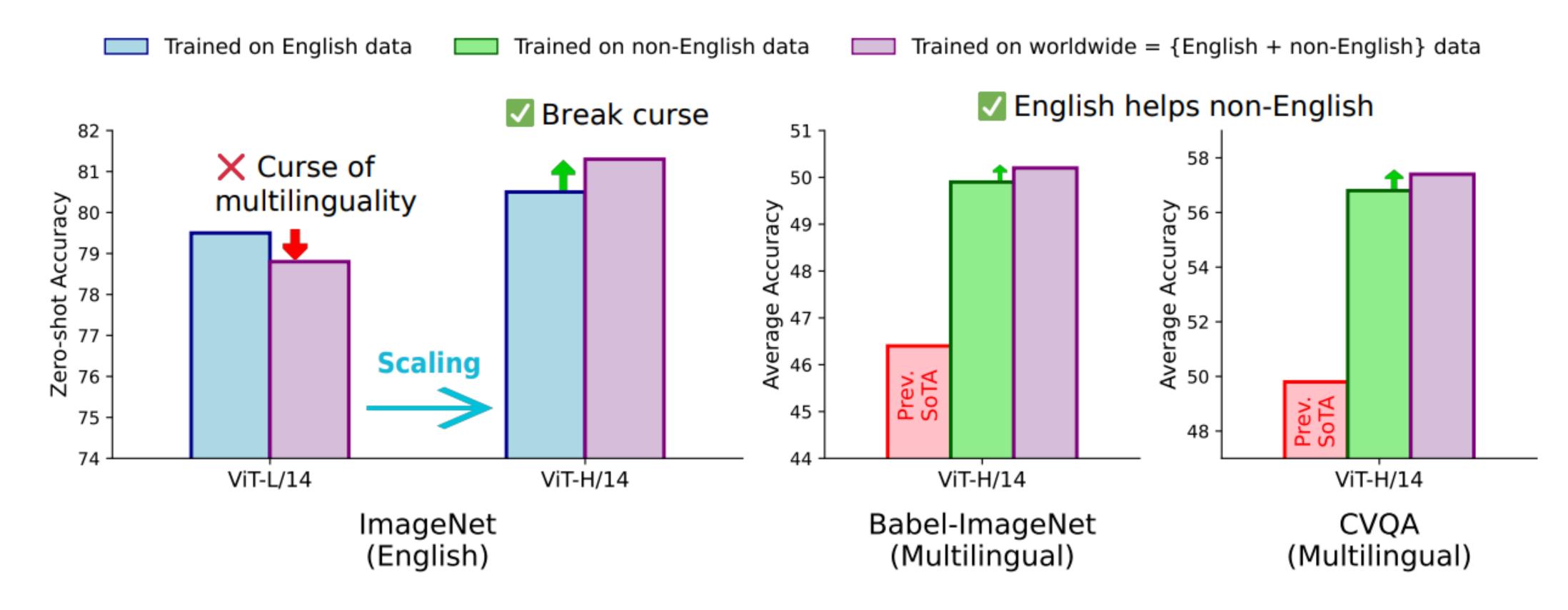
Common Crawl

- Hindering wide adoption (English as the major use case).
- Reduce language bias and culture bias.
- · If no filter philosophy for CLIP, so as to languages.

Meta CLIP 2 Scaling



Break the Curse of Multilinguality



Algorithm 2.0

```
# Stage 1: sub-string matching.
entry_counts = {lang: np.zero(len(M[lang])) for lang in M}
for image, text in D:
   # call substr_match which returns matched entry ids.
   text.matched_entry_ids = substr_match(text, M[text.lang])
   entry_counts[text.lang][text.matched_entry_ids] += 1
# Stage 2: compute t for each langauge.
p = t_to_p(t_en, entry_counts["en"]); t = {}
for lang in entry_counts:
   t[lang] = p_to_t(p, entry_counts[lang])
# Stage 3: balancing via indepenent sampling per language.
entry_probs = {}
for lang in entry_counts:
   entry_counts[lang][entry_counts[lang] < t[lang]] = t[lang]</pre>
   entry_probs[lang] = t[lang] / entry_counts[lang]
D_star = []
for image, text in D:
   for entry_id in text.matched_entry_ids:
      if random.random() < entry_probs[text.lang][entry_id]:</pre>
         D_star.append((image, text))
         break
```

Scaling Both model (ViT-H) and Seen Pairs (2.3x)

				Engl	lish Bench	marks	s Multilingual Benchmarks					
Model	ViT Size (Res.)	Data	Seen Pairs	IN val	SLIP 26 avg.	DC 37 avg.	Babel -IN	XM3600 T→I I→T	CVQA EN LOC	Flicker30k -200 T→I I→T	XTD-10 $T \rightarrow I I \rightarrow T$	XTD-200 $T \rightarrow I I \rightarrow T$
XLM-CLIP(Ilharco et al., 2021)	H/14(224)	LAION-5B	$32B (2.5 \times)$	77.0	69.4	65.5	34.0	50.4 / 60.5	56.1 / 48.2	43.2 / 46.2	87.1 / 88.4	42.5 / 45.2
mSigLIP(Zhai et al., 2023)	B/16(256)	WebLI(12B)	$40B (3.0 \times)$	75.1	63.8	60.8	40.2	44.5 / 56.6	51.8 / 45.7	34.0 / 36.0	80.8 / 84.0	37.8 / 40.6
mSigLIP(Zhai et al., 2023)	SO400M(256)	WebLI(12B)	$40B (3.0 \times)$	80.6	69.1	65.5	46.4	50.0 / 62.8	56.8 / 49.8	39.9 / 42.0	85.6 / 88.8	42.5 / 45.2
SigLIP 2(Tschannen et al., 2025)	SO400M(256)	WebLI(12B)	$40B (3.0 \times)$	83.2	73.7	69.4	40.8	48.2 / 59.7	58.5 / 49.0	36.6 / 40.3	86.1 / 87.6	40.3 / 44.5
Meta CLIP(Xu et al., 2024)	$ m L/14(224) \ H/14(224)$	English $(2.5B)$ English $(2.5B)$	$13B (1.0 \times)$ $13B (1.0 \times)$	79.2 80.5	69.8 72.4	$65.6 \\ 66.5$	-	 	 		 	
Meta CLIP 2	$\mathrm{L}/14(224)$	English Worldwide	$13B (1.0 \times) 29B (2.3 \times)$	79.5 78.8	$69.5 \\ 67.2$	$66.0 \\ 63.5$	- 44.2	 45.3 / 58.2	 59.2 / 55.1	 41.9 / 45.8	 82.8 / 85.0	 41.9 / 44.8
Meta CLIP 2	m H/14(224)	English	13B (1.0×)	80.4	72.6	68.7	-					
		Non-Eng.	17B (1.3×)	71.4	63.1	61.7	49.9	46.9 / 59.9	59.8 / 56.8	47.5 / 50.5	83.2 / 85.7	46.6 / 49.2
		Worldwide	13B (1.0×)	79.5	71.1	67.2	47.1	49.6 / 62.6	59.9 / 56.0	49.1 / 52.1	85.2 / 87.1	47.0 / 49.7
		Worldwide	29B (2.3×)	81.3	74.5	69.6	50.2	51.5 / 64.3	61.5 / 57.4	50.9 / 53.2	86.1 / 87.5	48.9 / 51.0

Table 1 Main ablation: Meta CLIP 2 breaks the curse of multilinguality when adopting ViT-H/14, with seen pairs scaled $(2.3\times)$ proportional to the added non-English data. Meta CLIP 2 outperforms mSigLIP with fewer seen pairs (72%), lower resolution $(224px \ vs. \ 256px)$, and comparable architectures $(H/14 \ vs. \ SO400M)$. We grey out baselines those are SoTA-aiming systems with confounding factors. Here, numbers of seen pairs are rounded to the nearest integer (e.g., 12.8B->13B).

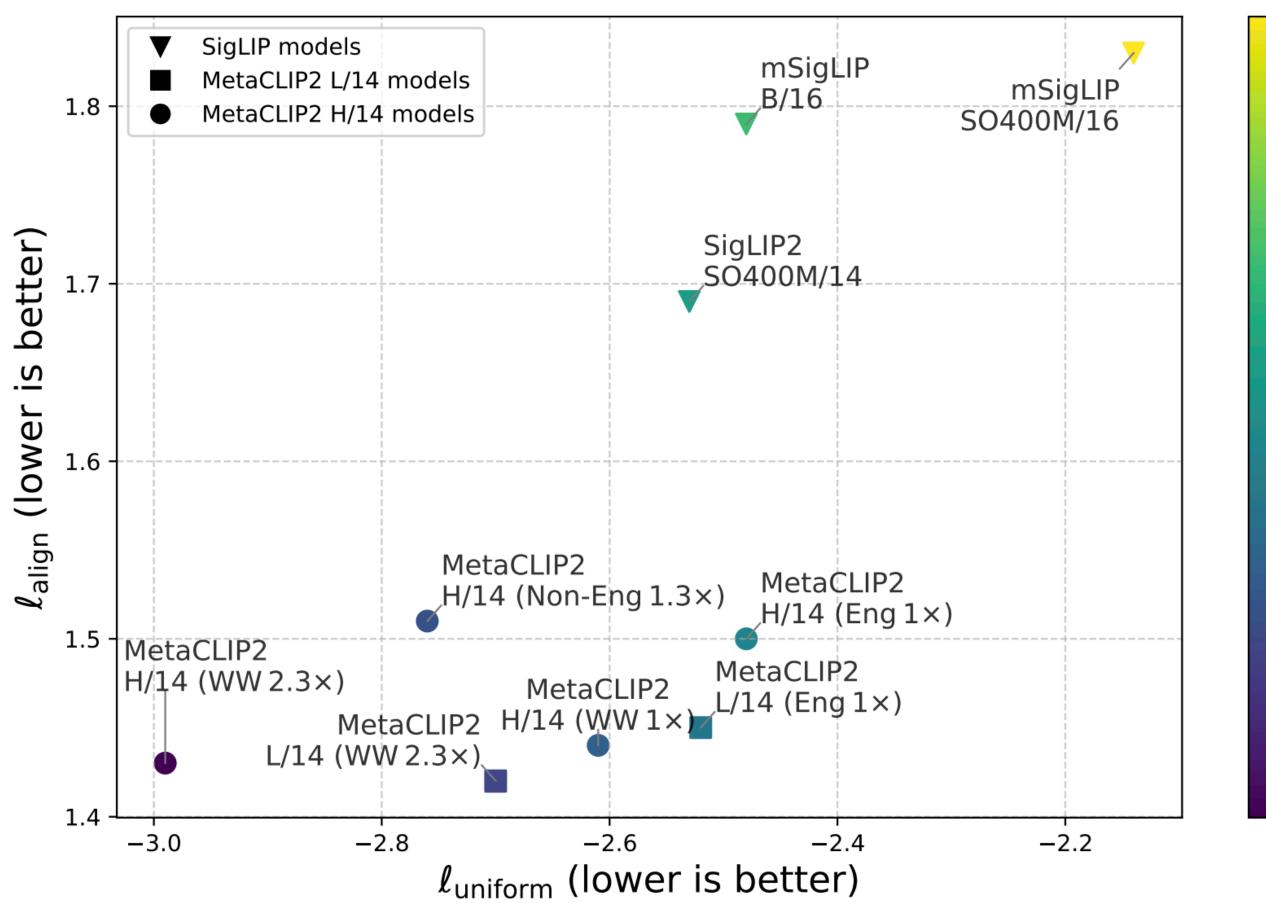
To Break the Curse of Multilinguality

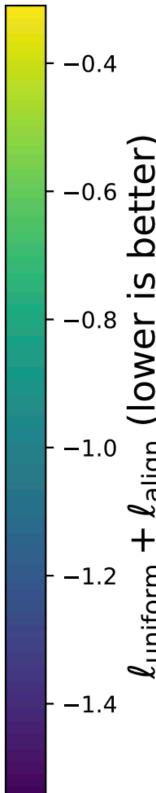
				Eng	ish Bench	marks	s Multilingual Benchmarks					
Model	ViT Size (Res.)	Data	Seen Pairs	IN val	SLIP 26 avg.	DC 37 avg.	Babel -IN	XM3600 $T \rightarrow I I \rightarrow T$	CVQA EN LOC	Flicker30k -200 $T{ ightarrow}I\ I{ ightarrow}T$	XTD-10 $T \rightarrow I I \rightarrow T$	XTD-200 $T \rightarrow I I \rightarrow T$
XLM-CLIP(Ilharco et al., 2021)	H/14(224)	LAION-5B	$32B (2.5 \times)$	77.0	69.4	65.5	34.0	50.4 / 60.5	56.1 / 48.2	43.2 / 46.2	87.1 / 88.4	42.5 / 45.2
mSigLIP(Zhai et al., 2023)	B/16(256)	WebLI(12B)	40B (3.0×)	75.1	63.8	60.8	40.2	44.5 / 56.6	51.8 / 45.7	34.0 / 36.0	80.8 / 84.0	37.8 / 40.6
mSigLIP(Zhai et al., 2023)	SO400M(256)	WebLI(12B)	40B (3.0×)	80.6	69.1	65.5	46.4	50.0 / 62.8	56.8 / 49.8	39.9 / 42.0	85.6 / 88.8	42.5 / 45.2
SigLIP 2(Tschannen et al., 2025)	SO400M(256)	WebLI(12B)	$40B (3.0 \times)$	83.2	73.7	69.4	40.8	48.2 / 59.7	58.5 / 49.0	36.6 / 40.3	86.1 / 87.6	40.3 / 44.5
Moto CLID(V: ot al. 2024)	L/14(224)	English(2.5B)	13B (1.0×)	79.2	69.8	65.6	-					
Meta CLIP(Xu et al., 2024)	m H/14(224)	English(2.5B)	$13B\ (1.0\times)$	80.5	72.4	66.5	-					
Meta CLIP 2	${ m L}/14(224)$	English	13B (1.0×)	79.5	69.5	66.0	-					
	, , ,	Worldwide	$29B (2.3 \times)$	78.8	67.2	63.5	44.2	45.3 / 58.2	59.2 / 55.1	41.9 / 45.8		41.9 / 44.8
Meta CLIP 2	m H/14(224)	English	$13B (1.0 \times)$	80.4	72.6	68.7	-					
		Non-Eng.	17B $(1.3 \times)$	71.4	63.1	61.7	49.9	46.9 $/$ 59.9	$59.8 \ / \ 56.8$	$47.5 \ / \ 50.5$	83.2 / 85.7	46.6 / 49.2
		Worldwide	$13B\ (1.0\times)$	79.5	71.1	67.2	47.1	49.6 / 62.6	$59.9 \ / \ 56.0$	49.1 / 52.1	85.2 / 87.1	47.0 / 49.7
		Worldwide	29B (2.3 \times)	81.3	74.5	69.6	50.2	51.5 / 64.3	$61.5 \ / \ 57.4$	50.9 / 53.2	86.1 / 87.5	48.9 / 51.0

Table 1 Main ablation: Meta CLIP 2 breaks the curse of multilinguality when adopting ViT-H/14, with seen pairs scaled $(2.3\times)$ proportional to the added non-English data. Meta CLIP 2 outperforms mSigLIP with fewer seen pairs (72%), lower resolution $(224px \ vs. \ 256px)$, and comparable architectures $(H/14 \ vs. \ SO400M)$. We grey out baselines those are SoTA-aiming systems with confounding factors. Here, numbers of seen pairs are rounded to the nearest integer (e.g., 12.8B->13B).

Alignment and Uniformity

Alignment vs. Uniformity Across Models





Culture Diversity

Model	Data	Seen Pairs	Dollar Street		CI Dv2	GeoDE
Model	Data	Seen Pairs	Top-1	Top-5	GLDv2	Geode
mSigLIP (Zhai et al., 2023)	WebLI(12B) (Chen et al., 2023b)	40B (3.0×)	36.0	62.5	45.3	94.5
SigLIP 2 (Tschannen et al., 2025)	WebLI(12B) (Chen et al., 2023b)	$40B (3.0 \times)$	36.7	61.9	48.5	95.2
	English	13B (1.0×)		52.8	93.4	
Meta CLIP 2	Non-English	$17B (1.3 \times)$	35.7	61.3	68.6	91.7
Meta CLIF 2	Worldwide	$13B\ (1.0\times)$	37.2	63.7	65.8	94.3
	Worldwide	29B $(2.3 \times)$	37.9	64.0	69.0	93.4

Table 4 Zero-shot classification accuracy on cultural diversity benchmarks. Meta CLIP 2 models are in ViT-H/14 and mSigLIP/SigLIP 2 are in ViT-SO400M. mSigLIP/SigLIP 2 are SoTA-aiming systems with many factors changed and thus greyed out.

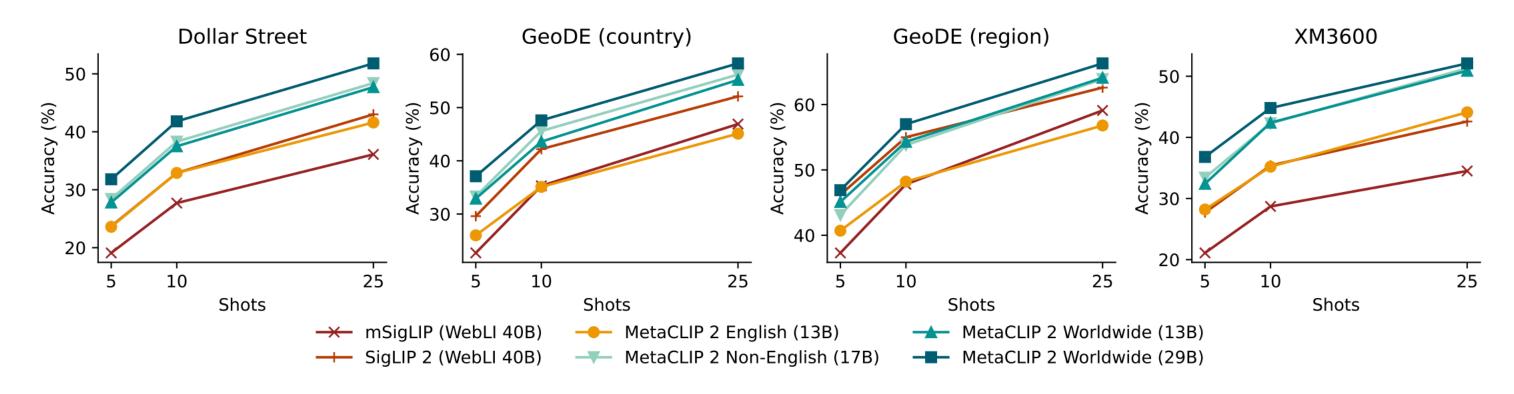
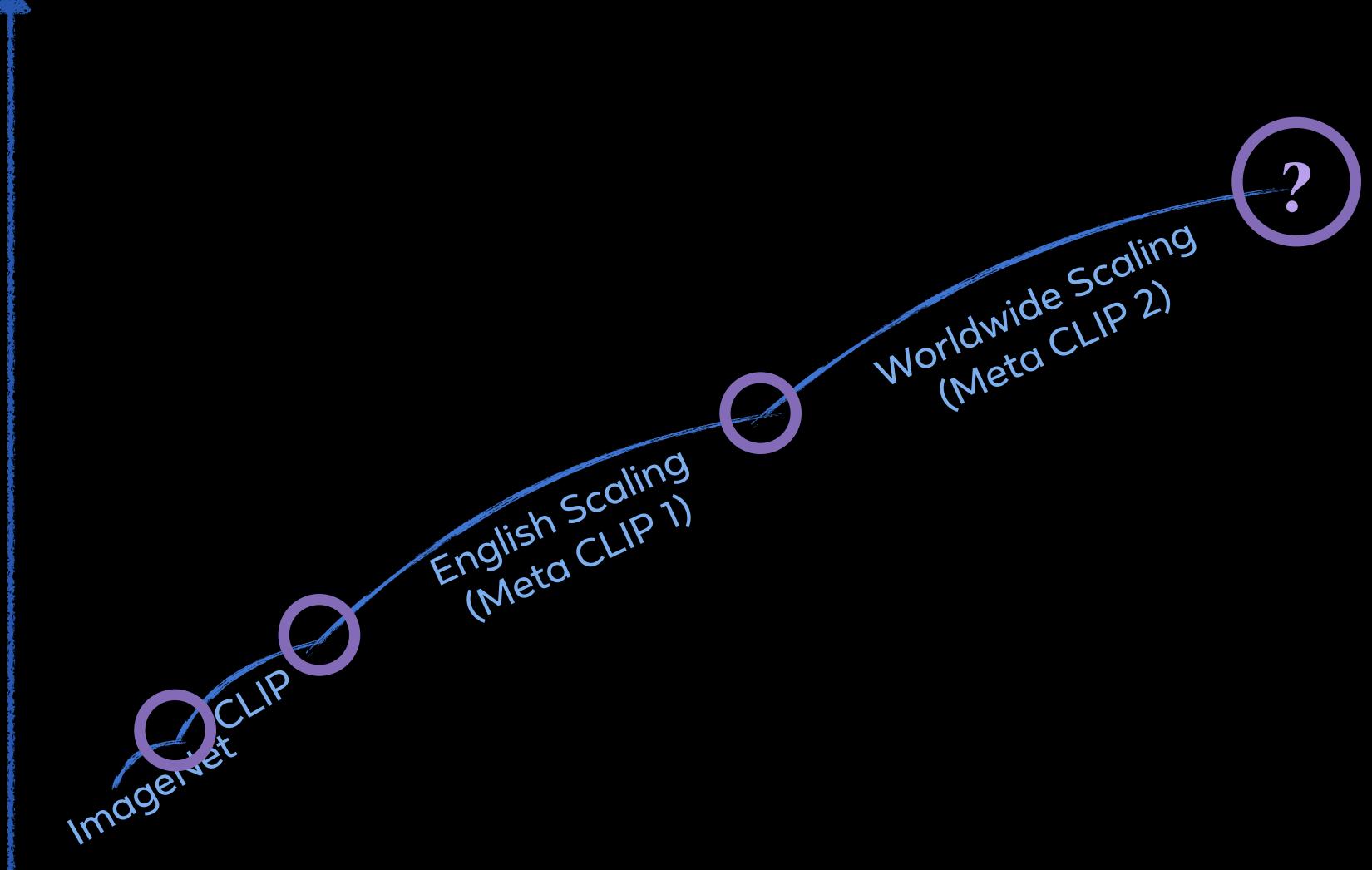
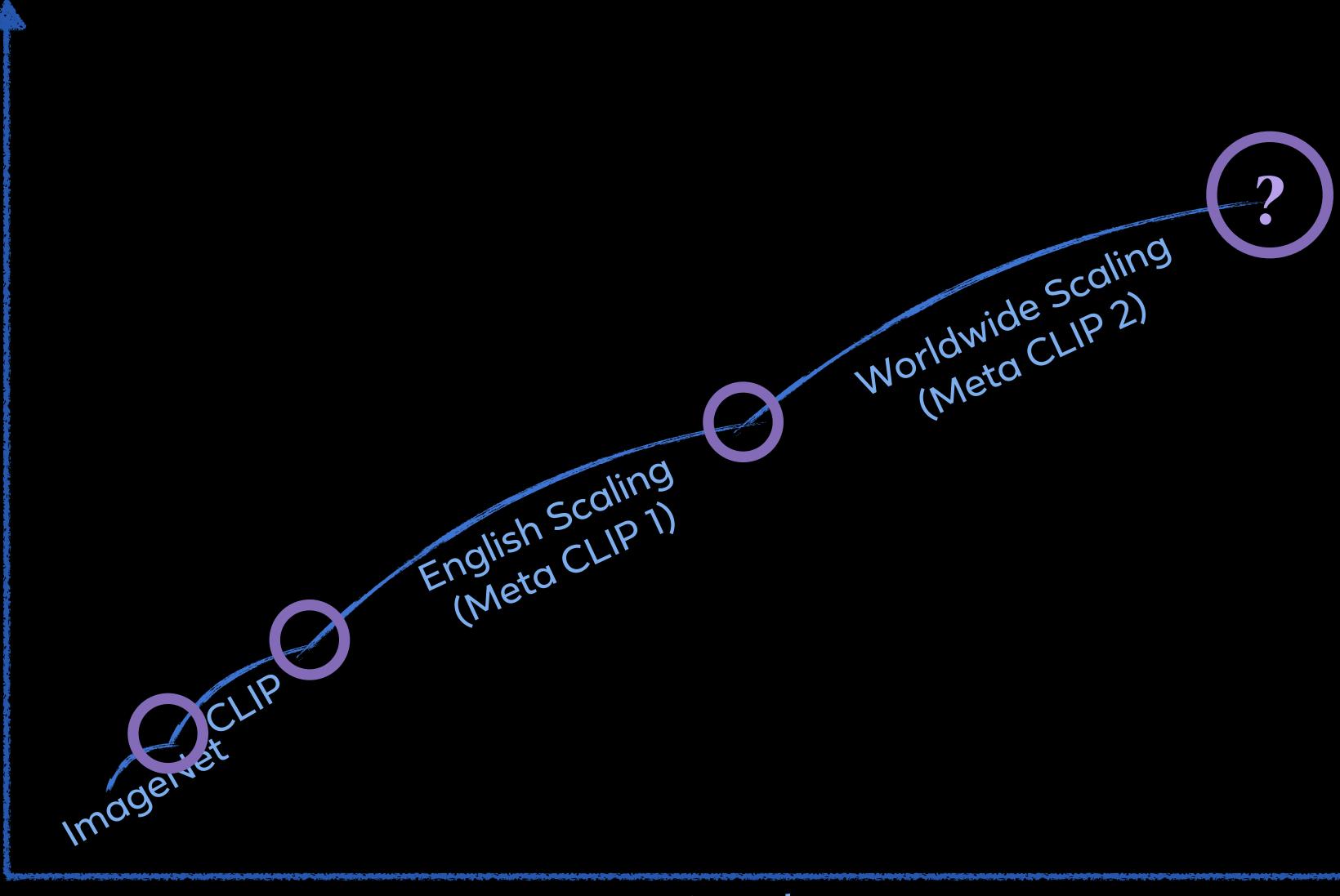
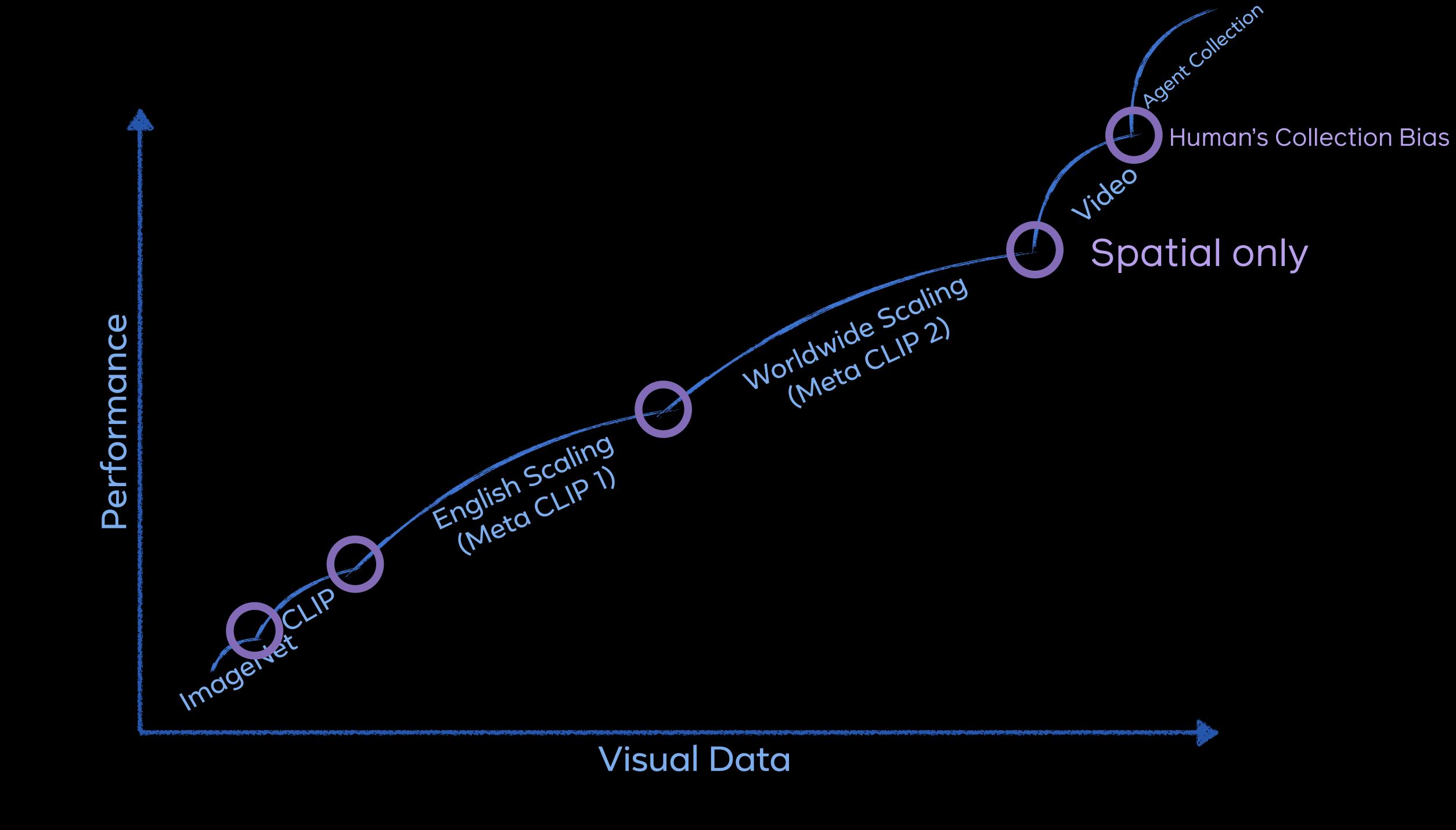


Figure 3 Few-shot geo-localization accuracy on cultural diversity benchmarks.

04 Future Bottlenecks (Estimation)







- Metadata, Code and Model:
- https://github.com/facebookresearch/MetaCLIP
- https://meta-clip.github.io
- For more information, visit Meta Booth, or

- Exhibit Hall C,D,E #4913
- Wed 3 Dec 11 a.m. PST 2 p.m. PST

