From Tuning to Guarantees: Statistically Valid Hyperparameter Selection

Amirmohammad Farzaneh

KCLIP Lab, Centre for Intelligent Information Processing Systems (CIIPS)

Department of Engineering, King's College London

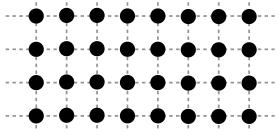
NeurIPS 2025 2 December 2025

 Hyperparameter selection is a key step in the deployment of pre-trained AI models.

• Examples:

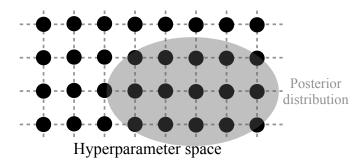
- inference parameters, such as test-time resources, prompt templates, temperature, or decision thresholds
- implementation parameters, such as arithmetic precision

- Traditional approaches are of best effort nature, targeting empirical performance.
 - No formal statistical guarantees
- Examples: Grid search [Bergstra and Bengio, 2012]

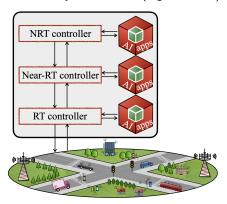


Hyperparameter space

- Traditional approaches are of best effort nature, targeting empirical performance:
 - No formal statistical guarantees
- Examples: Bayesian optimization [Snoek, Larochelle, and Adams, 2012]



- The deployment of AI in sensitive domains such as healthcare [Dzau et al., 2023] and engineering [Simeone, Park, and Zecchin, 2025] requires rigorous statistical guarantees.
- Example: Al-native wireless systems in 6G (e.g., O-RAN)



- Reliability requirements are application specific, e.g., probability of error, latency, fairness, ...
- Hyperparameter λ is said to be **reliable** if the AI model meets the reliability requirement when run with hyperparameter λ .

- Reliability requirements are application specific, e.g., probability of error, latency, fairness, ...
- Hyperparameter λ is said to be **reliable** if the AI model meets the reliability requirement when run with hyperparameter λ .
- Statistical validity in hyperparameter selection:

$$\Pr[\lambda \text{ is not reliable}] \leq \delta,$$

for a user-specified $0 < \delta < 1$ (Pr[·] is over data used for selection).

Discussion & Reflection

How should we think about reliability in practice?

Consider an application you care about (e.g., LLM prompting, RL policies, model selection, or wireless systems), and reflect on:

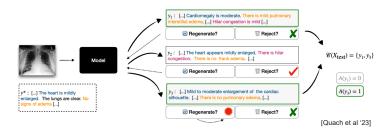
- What does it mean for a hyperparameter to be reliable? (e.g., stable accuracy, low risk under distribution shift, robustness across seeds)
- Which failures actually matter? (e.g., performance drops, fairness violations, safety constraints)
- What evidence would convince you that a hyperparameter is safe to deploy?
- How would you formalize these notions statistically?

We will revisit these questions as we connect reliability to FDR, risk control, and hypothesis testing.

Learn-Then-Test (LTT)
 [Angelopoulos, Bates, Candès, et al., 2021] formalizes statistically valid hyperparameter selection via multiple hypothesis testing (MHT).

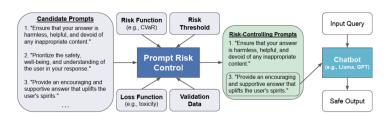
Learn-Then-Test: Some Applications

 Calibrating thresholds for test-time scaling (generation of multiple answers) in LLMs [Quach et al., 2023]



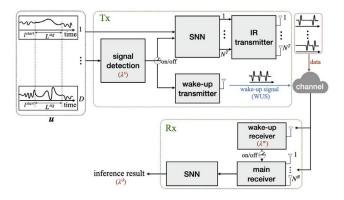
Learn-Then-Test: Some Applications

- Recommendation systems (learning to rank) [Angelopoulos, Krauth, et al., 2023]
- Information retrieval [Xu et al., 2024]
- Prompt template selection for LLMs [Zollo et al., 2023]



Learn-Then-Test: Some Applications

- Telecommunication systems [Simeone, Park, and Zecchin, 2025]
- Neuromorphic computing [Jiechen Chen et al., 2024]

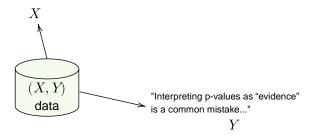


Overview

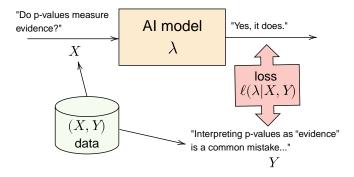
- Learn-Then-Test
- Generalizing Learn-Then-Test:
 - Beyond the Average Risk
 - Adaptive Hyperparameter Selection
 - Incorporating Prior Information
 - Selection with Autoevaluation
- Conclusions

• Data (X, Y) with X = input and Y = output

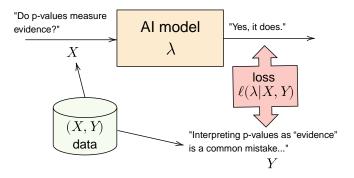
"Do p-values measure evidence?"



• $\ell(\lambda|X,Y) = \textbf{loss}$ at data point (X,Y) under hyperparameter λ (e.g., 0-1 loss)



• $\ell(\lambda|X,Y) = \textbf{loss}$ at data point (X,Y) under hyperparameter λ (e.g., 0-1 loss)



• $R(\lambda) = \mathbb{E}_{(X,Y)}[\ell(\lambda|X,Y)] = \text{average risk (e.g., probability of error)}$

Examples of Losses in Different Applications

Reliability depends on how we measure failure. Different applications call for different choices of loss $\ell(\lambda \mid X, Y)$:

- Classification / LLM prompting 0–1 loss, misclassification rate, token-level error, or a scoring loss (e.g., NLL/perplexity).
- **Regression / Forecasting** Squared error $(Y \hat{Y})^2$, absolute error $|Y \hat{Y}|$, pinball loss for quantiles.
- Structured Prediction / Detection mAP drop, IoU-based penalties, object-miss penalties, calibration errors (ECE/MCE).
- Reinforcement Learning / Control Negative return, constraint violation counts, regret, safety-critical failure events.
- LLM-based agents / LLM judging Preference loss, pairwise defeat probability (Bradley-Terry), task-success or factuality loss.
- Wireless / Telecom Scheduling Throughput deficit, latency violation, outage probability, or risk of violating QoS thresholds.

Once the loss is fixed, reliability means keeping its expected value $R(\lambda)$ acceptably low.

• Reliability condition:

$$\lambda$$
 is reliable $\Leftrightarrow R(\lambda) \leq \alpha$,

where α is a user-specified threshold

Reliability condition:

$$\lambda$$
 is reliable $\Leftrightarrow R(\lambda) \leq \alpha$,

where α is a user-specified threshold

• Statistical validity in hyperparameter selection:

$$\Pr[R(\lambda) > \alpha \text{ for a selected } \lambda] \leq \delta.$$

Reliability condition:

$$\lambda$$
 is reliable $\Leftrightarrow R(\lambda) \leq \alpha$,

where α is a user-specified threshold

• Statistical validity in hyperparameter selection:

$$\Pr[R(\lambda) > \alpha \text{ for a selected } \lambda] \leq \delta.$$

Parameter	Significance
α	Reliability requirement: $R(\lambda) \le \alpha$
δ	Maximum allowed failure rate for the hyperparameter selection strategy

Conventional Hyperparameter Selection

• Given some **held-out data** $\mathcal{D} = \{(X, Y)\}$, conventional methods directly optimize standard **empirical risk estimates**

$$\hat{R}(\lambda|\mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{(X,Y) \in \mathcal{D}} \ell(\lambda|X,Y)$$

over hyperparameter λ .

Statistical validity not guaranteed.

- LTT provides reliability guarantees by framing hyperparameter selection as **multiple hypothesis testing** (MHT).
- MHT underlies scientific discovery, A/B testing, ...

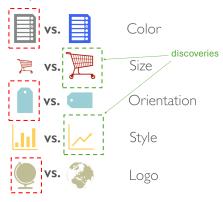
- LTT provides reliability guarantees by framing hyperparameter selection as **multiple hypothesis testing** (MHT).
- MHT underlies scientific discovery, A/B testing, ...
- MHT considers simultaneously a number of binary hypotheses.



- Each hypothesis is tested by collecting data (e.g., click-through rates)...
- ... producing a decision for the null hypothesis or for the alternative hypothesis (discovery).



- Each hypothesis is tested by collecting data (e.g., click-through rates)...
- ... producing a decision for the null hypothesis or for the alternative hypothesis (discovery).



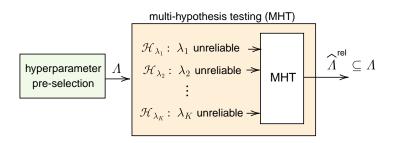
 Goal: Control error rate metrics such as the family-wise error rate (FWER):

 $Pr[any false discovery] \leq \delta$

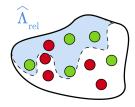
• ① Determine a set Λ of **candidate hyperparameters** using any methodology, such as grid search [Bergstra and Bengio, 2012] or Bayesian optimization [Snoek, Larochelle, and Adams, 2012].

- ① Determine a set Λ of **candidate hyperparameters** using any methodology, such as grid search [Bergstra and Bengio, 2012] or Bayesian optimization [Snoek, Larochelle, and Adams, 2012].
- ② Apply MHT for hyperparameter selection within set Λ:
 - Test a **null hypothesis** for each candidate hyperparameter λ :

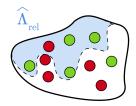
$$\mathcal{H}_{\lambda}$$
: λ is unreliable, i.e., $R(\lambda) > \alpha$



- igcup reliable hyperparams Λ^{rel}
- lacksquare unreliable hyperparams Λ^{unrel}



- igcup reliable hyperparams $\Lambda^{
 m rel}$
- lacksquare unreliable hyperparams Λ^{unrel}



- By using MHT, the subset $\hat{\Lambda}^{rel}$ of selected hyperparameters satisfies **error** rate control guarantees.
- Notably, the family-wise error rate (FWER) guarantee coincides with the statistical validity condition

 $\Pr[R(\lambda) > \alpha \text{ for a selected } \lambda] \leq \delta.$

 Given some held-out data D = {(X, Y)}, evaluate standard empirical risk estimates

$$\hat{R}(\lambda|\mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{(X,Y)\in\mathcal{D}} \ell(\lambda|X,Y)$$

for every $\lambda \in \Lambda$.

 Given some held-out data D = {(X, Y)}, evaluate standard empirical risk estimates

$$\hat{R}(\lambda|\mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{(X,Y)\in\mathcal{D}} \ell(\lambda|X,Y)$$

for every $\lambda \in \Lambda$.

• A larger value of the **estimated reliability** margin $(\alpha - \hat{R}(\lambda|\mathcal{D}))^+$ provides more evidence that λ is reliable.

 Given some held-out data D = {(X, Y)}, evaluate standard empirical risk estimates

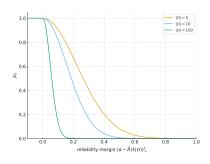
$$\hat{R}(\lambda|\mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{(X,Y) \in \mathcal{D}} \ell(\lambda|X,Y)$$

for every $\lambda \in \Lambda$.

- A larger value of the **estimated reliability** margin $(\alpha \hat{R}(\lambda|\mathcal{D}))^+$ provides more evidence that λ is reliable.
- Thus, a statistic of the form

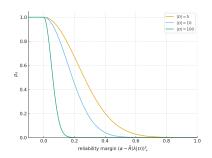
$$p_{\lambda} = e^{-2|\mathcal{D}|(\alpha - \hat{R}(\lambda|\mathcal{D}))_{+}^{2}}.$$

will tend to be small when λ is reliable.

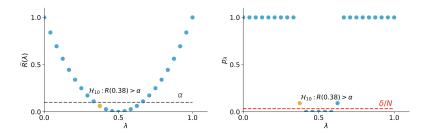


- If the loss is bounded within [0,1], the statistic p_{λ} is a **p-value** for the null hypothesis \mathcal{H}_{λ} .
- A small p-value p_{λ} indicates evidence that the hyperparameter λ is reliable:

$$\Pr[p_{\lambda} \leq \delta \mid \lambda \text{ is unreliable}] \leq \delta,$$
 for $0 < \delta < 1.$



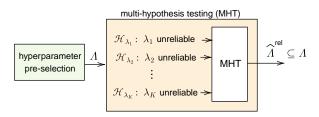
Why Empirical Risk Alone Is Not Reliable



- ullet Empirical risk $\hat{R}(\lambda)$ can underestimate the true risk due to finite-sample noise.
- This may cause an **unreliable** hyperparameter to falsely appear safe.
- LTT converts these empirical risk gaps into valid p-values, ensuring unreliable hyperparameters cannot "slip through" by chance.

Figure reproduced from Angelopoulos, Bates, Candès, et al., 2021.

• We have a set of p-values p_{λ} , one for each hyperparameter $\lambda \in \Lambda$.



- Examples of FWER-controlling MHT procedures:
 - Bonferroni correction

$$\lambda \in \hat{\Lambda}^{\mathsf{rel}}$$
 if $p_{\lambda} \leq rac{\delta}{|\Lambda|}$

Fixed sequence testing

Error Rates in Multiple Hypothesis Testing

- When testing many hypotheses simultaneously (e.g., many hyperparameters), different types of errors can occur.
- Two common error metrics:
 - FWER (Family-Wise Error Rate): Probability of making at least one false discovery.
 - FDR (False Discovery Rate): Expected proportion of false discoveries among all discoveries.
- These metrics control different risks, and are used for different applications.

Family-Wise Error Rate (FWER)

• In hyperparameter selection, a "false discovery" means:

Selecting a hyperparameter λ that is actually unreliable.

• **FWER** measures the probability of making *any* such mistake:

$$\mathsf{FWER} = \mathsf{Pr} \left(\exists \lambda \in \hat{\Lambda}^{\mathrm{rel}} : R(\lambda) > \alpha \right).$$

• Goal of LTT: Ensure

$$\mathsf{FWER} \leq \delta,$$

which exactly matches the notion of statistical validity in hyperparameter selection.

• Very conservative: tries to avoid even a single unreliable choice.

False Discovery Rate (FDR)

- In set-valued prediction problems (e.g., multi-label classification), we may output several items at once.
- FDR measures the *expected proportion* of incorrect predictions:

$$\mathsf{FDR}(T) = \mathbb{E}\left[\frac{\#\{\mathsf{false \ predictions}\}\}}{\mathsf{max}\{1,\#\{\mathsf{predictions}\}\}}\right].$$

- Unlike FWER, FDR does not penalize a single mistake heavily.
- FDR is appropriate when:
 - We produce many items at once (e.g., a set of labels),
 - and we care about the average purity of the set.
- Examples of notable FDR-controlling procedures:
 - Benjamini-Hochberg (BH) procedure [Benjamini and Hochberg, 1995]
 - Benjamini-Yekutieli (BY) [Benjamini and Yekutieli, 2001]

Example 1: Multi-Label Classification with FDR Control

- Task: multi-label classification on MS COCO.
 - Each image X has a set of labels $Y \subseteq \{1, ..., K\}$.
 - Base model $\hat{f}(x) \in [0,1]^K$ outputs class-wise probabilities.
- We predict a set of labels

$$T_{\lambda}(x) = \{z \in \{1, \dots, K\} : \hat{f}_{z}(x) \ge \lambda\}$$

and we want to control the **false discovery rate** (FDR) of wrong labels in $T_{\lambda}(X)$.

• LTT chooses λ so that FDR is controlled at level (α, δ) .

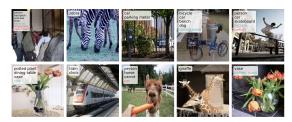
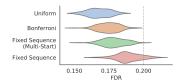


Figure reproduced from Angelopoulos, Bates, Candès, et al., 2021.

Example 1: Multi-Label Classification with FDR Control

- Dataset: MS COCO, n = 4000 calibration points, 1000 validation points.
- Candidate thresholds: $\Lambda = \{0, 0.001, \dots, 1\}$.
- LTT compares different MHT procedures:
 - Uniform (no multiple testing correction)
 - Bonferroni
 - Fixed-sequence testing
 - Fixed-sequence testing with multiple starting points
- Goal: control FDR at level $\alpha = 0.2$ with failure probability $\delta = 0.1$.



Method	50%	75%	90%	99%	99.9%
Uniform	3	4	6	11	13
Bonferroni	3	4	7	11	14
Fixed Sequence (Multi-Start)	3	4	7	11	14
Fixed Sequence	3	5	7	12	14

Figure reproduced from Angelopoulos, Bates, Candès, et al., 2021.

Try LTT Yourself!

Interactive LTT Notebook & Code

The following GitHub repo contains a simple, self-contained implementation of Learn-Then-Test (LTT) that you can run immediately on Colab or locally.

https://github.com/amirfar76/neurips25-valid-hparam-tutorial

Generalizing Learn-Then-Test: Beyond the Average Risk

Beyond the Average Risk

- LTT controls the average risk $R(\lambda) = \mathbb{E}_{(X,Y)}[\ell(\lambda|X,Y)]$.
- In some applications, it may be preferable to control:
 - a quantile of the loss $\ell(\lambda|X,Y)$: quantile risk
 - functionals of the data distribution: information-theoretic measures

Controlling the Quantile Risk: Example

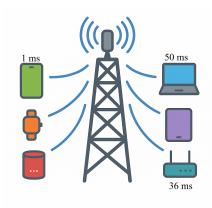
• Wireless scheduling problem:

 Reliability requirement using the average risk: Ensure that the average user delay is less than 10 ms

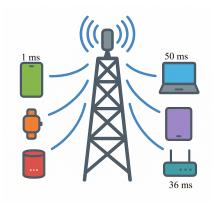
$$R(\lambda) \le \alpha = 10 \text{ ms}$$

with a probability no smaller than 90% ($\delta=0.1$)

Controlling the Quantile Risk: Example



Controlling the Quantile Risk: Example



- Reliability requirement using the quantile risk:
 - \bullet At least 90% of the users must have a delay smaller than 10 ms

$$R_q(\lambda) \leq \alpha = 10 \text{ ms}$$

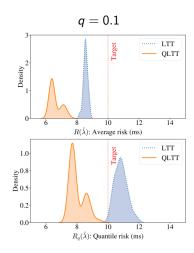
with q = 0.1

Quantile Learn-Then-Test

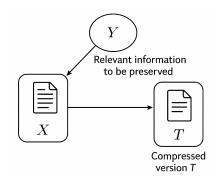
- Quantile LTT (QLTT) [Farzaneh, Park, and Simeone, 2024] extends LTT to control the quantile risk.
- Invert a confidence interval on the desired quantile to obtain a p-value.

Quantile Learn-Then-Test

- Quantile LTT (QLTT) [Farzaneh, Park, and Simeone, 2024] extends LTT to control the quantile risk.
- Invert a confidence interval on the desired quantile to obtain a p-value.



- X = input
- Y = target variable
- $(X, Y) \sim P_{XY}$, with P_{XY} unknown
- Goal: Extract a compressed representation T ~ P_{T|X} of X that is sufficiently relevant for predicting Y.



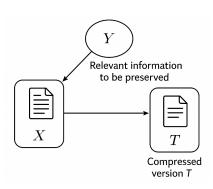
• Mutual information:

$$I(A; B) = \mathbb{E}_{P_{AB}} \left[\log_2 \left(\frac{P_{AB}}{P_A \cdot P_B} \right) \right]$$

• Mutual information:

$$I(A; B) = \mathbb{E}_{P_{AB}} \left[\log_2 \left(\frac{P_{AB}}{P_A \cdot P_B} \right) \right]$$

 Information Bottleneck (IB) problem [Tishby, Pereira, and Bialek, 2001; Zaidi, Estella-Aguerri, and Shamai, 2020]:



• Given data $\mathcal{D} = \{(X, Y)\} \underset{\text{i.i.d.}}{\sim} P_{XY}$, one can produce the estimates $\hat{I}(X; T)$ and $\hat{I}(T; Y)$.

- Given data $\mathcal{D} = \{(X, Y)\} \underset{\text{i.i.d.}}{\sim} P_{XY}$, one can produce the estimates $\hat{I}(X; T)$ and $\hat{I}(T; Y)$.
- Introduce a Lagrange multiplier $\lambda > 0$ to tackle the unconstrained problem [Alemi et al., 2017]

$$\underset{P_{T|X}}{\mathsf{minimize}} \quad \underbrace{\hat{J}(X;T)}_{\mathsf{size}} - \lambda \underbrace{\hat{J}(T;Y)}_{\mathsf{relevance}}.$$

- Given data $\mathcal{D} = \{(X, Y)\} \underset{\text{i.i.d.}}{\sim} P_{XY}$, one can produce the estimates $\hat{I}(X; T)$ and $\hat{I}(T; Y)$.
- Introduce a Lagrange multiplier $\lambda > 0$ to tackle the unconstrained problem [Alemi et al., 2017]

$$\underset{P_{T|X}}{\mathsf{minimize}} \quad \underbrace{\hat{J}(X;T)}_{\mathsf{size}} - \lambda \underbrace{\hat{J}(T;Y)}_{\mathsf{relevance}}.$$

• Reliability requirement: Select the hyperparameter λ to guarantee the relevance constraint

$$I(T; Y) \ge \alpha$$

- Given data $\mathcal{D} = \{(X, Y)\} \underset{\text{i.i.d.}}{\sim} P_{XY}$, one can produce the estimates $\hat{I}(X; T)$ and $\hat{I}(T; Y)$.
- Introduce a Lagrange multiplier $\lambda>0$ to tackle the unconstrained problem [Alemi et al., 2017]

$$\underset{P_{T|X}}{\mathsf{minimize}} \quad \underbrace{\hat{J}(X;T)}_{\mathsf{size}} - \lambda \underbrace{\hat{J}(T;Y)}_{\mathsf{relevance}}.$$

• Reliability requirement: Select the hyperparameter λ to guarantee the relevance constraint

$$I(T; Y) \ge \alpha$$

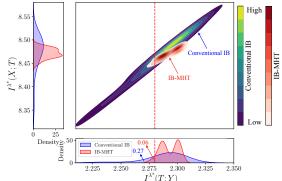
• Since the joint distribution P_{XY} is not known, one can only ensure the **probabilistic relevance constraint**:

$$\Pr\left[I(T;Y)<\alpha\right]\leq\delta$$

where δ is a user defined probability

• **IB-MHT** [Farzaneh and Simeone, 2024] inverts a confidence interval on the mutual information to obtain p-values for each candidate Lagrange multiplier, allowing the use of LTT.

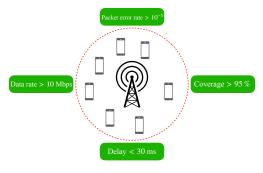
- **IB-MHT** [Farzaneh and Simeone, 2024] inverts a confidence interval on the mutual information to obtain p-values for each candidate Lagrange multiplier, allowing the use of LTT.
- Image processing example: Joint distributions of the mutual informations I(T;Y) and I(X;T) obtained by using a conventional IB solver [Alemi et al., 2017] and IB-MHT ($\delta=0.1$)



Generalizing Learn-Then-Test: Multi-Objective Optimization

Multi-Objective Optimization

- LTT only controls a single risk function $R(\lambda)$.
- In some applications, there are multiple risk functions to be controlled.

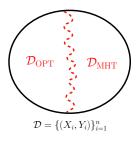


$$\min_{\lambda \in \Lambda} \{R_{L_c+1}(\lambda), R_{L_c+2}(\lambda), \dots, R_L(\lambda)\}$$

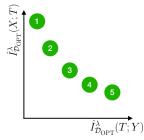
subject to $R_I(\lambda) < \alpha_I$ for all $1 \le I \le L_c$,

Pareto Testing

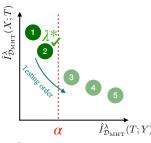
• To address this, Pareto testing (PT) [Laufer-Goldshtein et al., 2023] takes the following steps.



(1) Split data set \mathcal{D}



② Estimate Pareto frontier using $\mathcal{D}_{\mathrm{OPT}}$



 $\begin{array}{c} \text{ (3) Sequential FWER-} \\ \text{ controlling MHT using} \\ \mathcal{D}_{\text{MHT}} \end{array}$

Try PT Yourself!

Interactive PT Notebook & Code

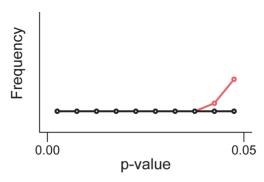
The following GitHub repo contains a simple, self-contained implementation of Pareto Testing (PT) that you can run immediately on Colab or locally.

https://github.com/amirfar76/neurips25-valid-hparam-tutorial

Generalizing Learn-Then-Test: Adaptive Hyperparameter Selection

- LTT is a **batch** method operating on a **fixed data set**.
- In practice, collecting data and evaluating the loss of a model can be expensive: it may require interactions with the real world, simulations, optimizations, ...
- It is thus useful to carry out testing **sequentially**, **discarding** less performing hyperparameters and **terminating** as soon as possible.

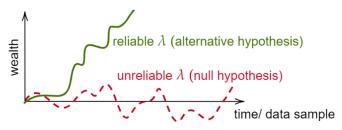
- LTT does not support adaptive hyperparameter selection:
- p-values do not allow for optional continuation: p-hacking [Head et al., 2015].



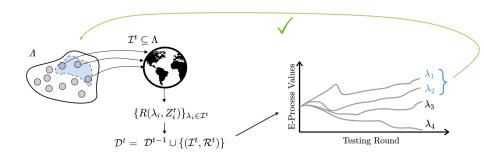
• E-values are a (nonparametric, composite) generalization of likelihood ratios [Shafer and Vovk, 2019, Ramdas and Wang, 2024], which are more robust than p-values.

- **E-values** are a (nonparametric, composite) generalization of likelihood ratios [Shafer and Vovk, 2019, Ramdas and Wang, 2024], which are more robust than p-values.
- Specifically, the sequential extension of e-values, known as e-processes, supports optional continuation (by Ville's theorem).

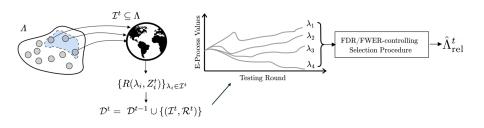
- **E-values** are a (nonparametric, composite) generalization of likelihood ratios [Shafer and Vovk, 2019, Ramdas and Wang, 2024], which are more robust than p-values.
- Specifically, the sequential extension of e-values, known as **e-processes**, supports **optional continuation** (by Ville's theorem).
- An e-process has the **game-theoretic** interpretation of accumulated wealth for a strategy **betting** on the reliability of a hyperparameter.



- Adaptive LTT (aLTT) [Zecchin, Park, and Simeone, 2024]
 - ullet Test a subset $\mathcal{I}^t \subseteq \Lambda$ of hyperparameters at each testing round t
 - ullet Update **e-process** for each hyperparameter $\lambda \in \mathcal{I}^t$
 - Stop, producing a set $\Lambda^{\rm rel}$, or continue

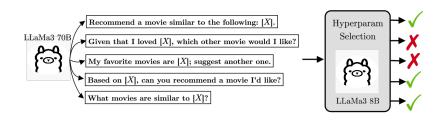


 Thanks to the anytime validity properties of e-processes, aLTT supports optional continuation and adaptive termination, while guaranteeing FWER control.

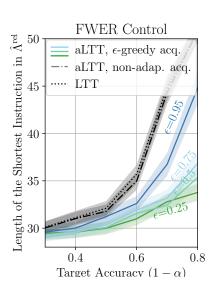


Example

- Prompt template selection from a set Λ of LLM-generated candidate prompts.
- Reliability requirement: Average error rate of the answer
- Post-selection optimization: Minimize average prompt length



Example

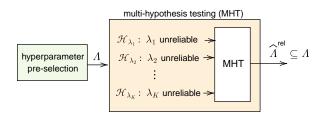


Generalizing Learn-Then-Test: Incorporating Prior Information

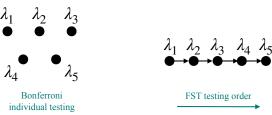
Incorporating Prior Information

- In some applications, one may have prior information about the relative reliability level of different hyperparameters.
- Examples:
 - a higher resource utilization may imply higher accuracy
 - use LLM-as-a-judge

Incorporating Prior Information

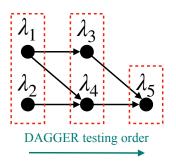


 Prior information can inform the MHT step, e.g., via fixed-sequence testing (FST):



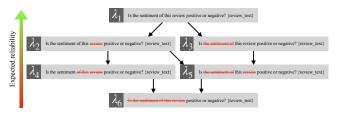
Reliability Graph-based Pareto Testing

- However, prior information possibly extracted from separate data may be much richer than a simple linear ordering.
- Reliability graph-based Pareto testing (RG-PT) [Farzaneh and Simeone, 2025] operates MHT over a directed acyclic graph (via DAGGER [Ramdas, Jianbo Chen, et al., 2019]).



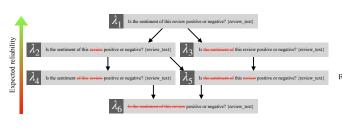
Example

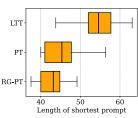
• Prompt template optimization



Example

Prompt template optimization





(Pareto testing [Laufer-Goldshtein

et al., 2023])

Generalizing Learn-Then-Test: Hyperparameter Selection with Autoevaluation

Reliable Hyperparameter Selection via Autoevaluation

- LTT requires held-out data (X, Y) to estimate the risk (and compute p-values or e-values).
- However, labels Y may be scarce.

Reliable Hyperparameter Selection via Autoevaluation

- LTT requires held-out data (X, Y) to estimate the risk (and compute p-values or e-values).
- However, labels Y may be scarce.
- **R-AutoEval** [Boyeau et al., 2024, Eyre and Madras, 2024, Schneider et al., 2024] allows for reliable hyperparameter selection via LTT by assuming:
 - limited labeled data
 - abundant unlabeled data

Reliable Hyperparameter Selection via Autoevaluation

 R-AutoEval incorporates synthetic labels through prediction-powered inference (PPI) [Angelopoulos, Bates, Fannjiang, et al., 2023]

PPI risk estimate = estimate with unlabeled data

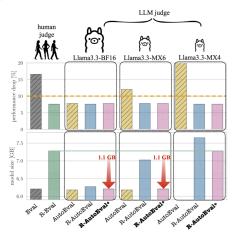
- bias correction using labeled data

R-AutoEval+

• R-AutoEval+ [Park, Zecchin, and Simeone, 2025] dynamically tunes its reliance on synthetic data, reverting to conventional methods based only on labeled data when the autoevaluator is insufficiently accurate.

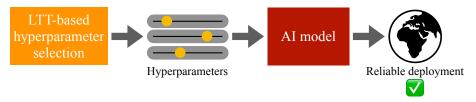
R-AutoEval+

- R-AutoEval+ [Park, Zecchin, and Simeone, 2025] dynamically tunes its
 reliance on synthetic data, reverting to conventional methods based only
 on labeled data when the autoevaluator is insufficiently accurate.
- Post-training quantization of LLMs



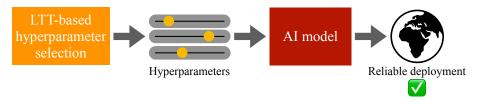
Conclusions

Conclusion



- Hyperparameter selection is a key step in the deployment of pre-trained AI models.
- Multiple hypothesis testing provides a principled statistical framework to ensure statistical guarantees (Learn-Then-Test).
- This talk has reviewed several practical extensions:
 - quantile risk and information-theoretic measures
 - adaptive selection
 - prior information for structured testing
 - autoevaluation

Conclusion



- Hyperparameter selection is a key step in the deployment of pre-trained AI models.
- Multiple hypothesis testing provides a principled statistical framework to ensure statistical guarantees (Learn-Then-Test).
- This talk has reviewed several practical extensions:
 - quantile risk and information-theoretic measures
 - adaptive selection
 - prior information for structured testing
 - autoevaluation
- Future work:
 - extension to training-time hyperparameter setting (e.g., freeze-thaw)
 - large-scale deployment in engineering settings (e.g., O-RAN)

Live Q&A with Anastasios Angelopoulos

University of California, Berkeley
Author of the original Learn–Then–Test (LTT) framework

people.eecs.berkeley.edu/~angelopoulos

We will now switch to the live Zoom session.

Please feel free to ask questions about LTT, conformal prediction, multiple hypothesis testing, or broader reliability topics.

Acknowledgments

 This work was supported by the European Union's Horizon Europe project CENTRIC (101096379), by the Open Fellowships of the EPSRC (EP/W024101/1), and by the EPSRC project (EP/X011852/1).

References I

- Alemi, Alexander A et al. (2017). "Deep Variational Information Bottleneck". In: Proc. International Conference on Learning Representations.
- Angelopoulos, Anastasios N, Stephen Bates, Emmanuel J Candès, et al. (2021). "Learn then test: Calibrating predictive algorithms to achieve risk control". In: arXiv preprint arXiv:2110.01052.
- Angelopoulos, Anastasios N, Stephen Bates, Clara Fannjiang, et al. (2023). "Prediction-powered inference". In: *Science* 382.6671, pp. 669–674.
- Angelopoulos, Anastasios N, Karl Krauth, et al. (2023). "Recommendation systems with distribution-free reliability guarantees". In: *Conformal and Probabilistic Prediction with Applications*. PMLR, pp. 175–193.
- Benjamini, Yoav and Yosef Hochberg (1995). "Controlling the false discovery rate: a practical and powerful approach to multiple testing". In: *Journal of the Royal statistical society: series B (Methodological)* 57.1, pp. 289–300.
- Benjamini, Yoav and Daniel Yekutieli (2001). "The control of the false discovery rate in multiple testing under dependency". In: *Annals of statistics*, pp. 1165–1188.

References II

Bergstra, James and Yoshua Bengio (2012). "Random search for hyper-parameter optimization.". In: Journal of machine learning research 13.2.

Boyeau, Pierre et al. (2024). "Autoeval done right: Using synthetic data for model evaluation". In: arXiv preprint arXiv:2403.07008.

Chen, Jiechen et al. (2024). "Neuromorphic split computing with wake-up radios: Architecture and design via digital twinning". In: IEEE Transactions on Signal Processing.

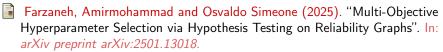
Dzau, Victor J et al. (2023). Achieving the promise of artificial intelligence in health and medicine: Building a foundation for the future.

Eyre, Benjamin and David Madras (2024). "Auto-evaluation with few labels through post-hoc regression". In: arXiv preprint arXiv:2411.12665.

Farzaneh, Amirmohammad, Sangwoo Park, and Osvaldo Simeone (2024). "Quantile Learn-Then-Test: Quantile-Based Risk Control for Hyperparameter Optimization". In: IEEE Signal Processing Letters.

Farzaneh, Amirmohammad and Osvaldo Simeone (2024). "Statistically Valid Information Bottleneck via Multiple Hypothesis Testing". In: arXiv preprint arXiv:2409.07325.

References III



- Head, Megan L et al. (2015). "The extent and consequences of p-hacking in science". In: *PLoS biology* 13.3, e1002106.
- Laufer-Goldshtein, Bracha et al. (2023). "Efficiently controlling multiple risks with Pareto testing". In: *Proc. International Conference on Learning Representations*.
- Park, Sangwoo, Matteo Zecchin, and Osvaldo Simeone (2025). "Adaptive Prediction-Powered AutoEval with Reliability and Efficiency Guarantees". In: arXiv preprint arXiv:2505.18659.
- Quach, Victor et al. (2023). "Conformal language modeling". In: arXiv preprint arXiv:2306.10193.
- Ramdas, Aaditya, Jianbo Chen, et al. (2019). "A sequential algorithm for false discovery rate control on directed acyclic graphs". In: *Biometrika* 106.1, pp. 69–86.

References IV

- Schneider, Lennart et al. (2024). "Hyperband-based Bayesian optimization for black-box prompt selection". In: arXiv preprint arXiv:2412.07820.
- Shafer, Glenn and Vladimir Vovk (2019). Game-theoretic foundations for probability and finance. John Wiley & Sons.
- Simeone, Osvaldo, Sangwoo Park, and Matteo Zecchin (2025). "Conformal calibration: Ensuring the reliability of black-box ai in wireless systems". In: arXiv preprint arXiv:2504.09310.
- Snoek, Jasper, Hugo Larochelle, and Ryan P Adams (2012). "Practical bayesian optimization of machine learning algorithms". In: *Advances in neural information processing systems* 25.
- Tishby, Naftali, Fernando Pereira, and William Bialek (2001). "The Information Bottleneck Method". In: *Proc. Allerton Conference on Communication, Control and Computation.*
- Xu, Yunpeng et al. (2024). "Two-stage Risk Control with Application to Ranked Retrieval". In: arXiv preprint arXiv:2404.17769.

References V

Zaidi, Abdellatif, Inaki Estella-Aguerri, and Shlomo Shamai (2020). "On the information bottleneck problems: Models, connections, applications and information theoretic views". In: *Entropy* 22.2, p. 151.

Zecchin, Matteo, Sangwoo Park, and Osvaldo Simeone (2024). "Adaptive learn-then-test: Statistically valid and efficient hyperparameter selection". In: arXiv preprint arXiv:2409.15844.

Zollo, Thomas P et al. (2023). "Prompt risk control: A rigorous framework for responsible deployment of large language models". In: arXiv preprint arXiv:2311.13628.