# The emergence of sparse attention

Impact of data distribution and benefits of repetition



Nicolas Zucchet





Francesco D'Angelo



Andrew Lampinen



Stephanie Chan





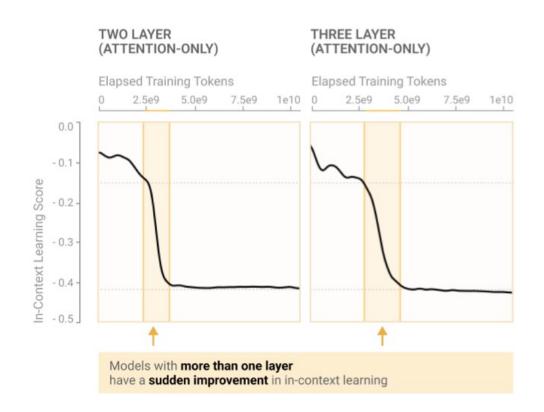
We propose a simple framework to think about **how long** it takes for **Transformers** to **learn** certain abilities: **sparse attention**.

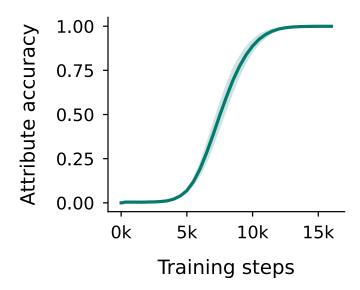
We explain why:

- 1. Sparse attention emerges.
- 2. Learning time increases as **sequence length increases** and as data gets more **diverse**.
- 3. Repetition can speed up learning.

### Motivation

What are the mechanisms underlying emergence during learning?





Zucchet et al. 2025

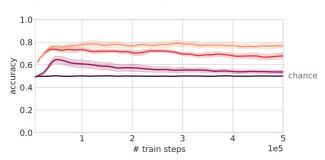
Olsson et al. 2022

### **Motivation**

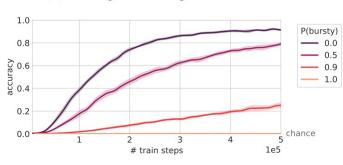
How does data influence emergence? Why is repetition useful?

#### In-context learning

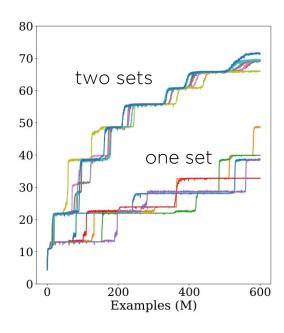
(a) In-context learning on holdout classes.



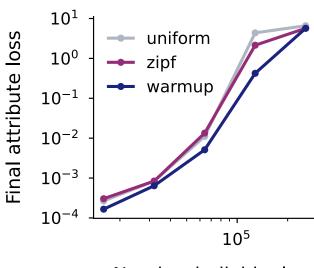
(b) In-weights learning on trained classes.



Computing GCD



Factual recall



Number individuals

Chan et al. 2022

Charton & Kempe 2024

Zucchet et al. 2025

# Why sparse attention?

### **Empirical intuition**

Many phase transitions coincide with the development of sparse attention layers

#### Theoretical intuition

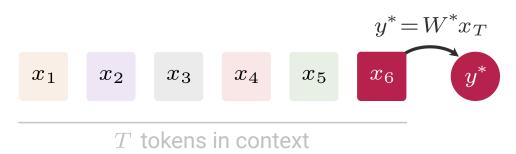
Attention is typically uniform at initialization, so the **information** flowing between two tokens **decreases** as **context length increases** 

# A theoretically tractable toy model

What is a sparse attention mechanism doing?

- Filtering relevant information out of "noise"
- Transformation of this information into desired answer (e.g. an associative memory)





x, y dimension d

Model. Simplified Transformer

$$y = W \sum_{t=1}^{T} \operatorname{softmax}(a)_{t} x_{t}$$

# Learning dynamics

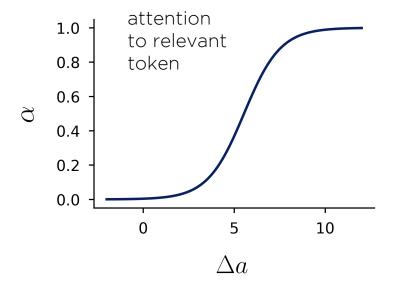
Under reasonable assumptions, we can reduce the learning dynamics to two variables

 $\Delta a$ 

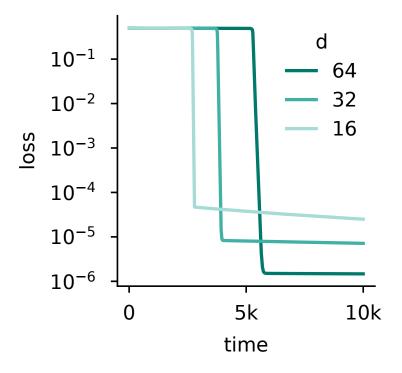
logit difference between relevant and non-relevant tokens

w

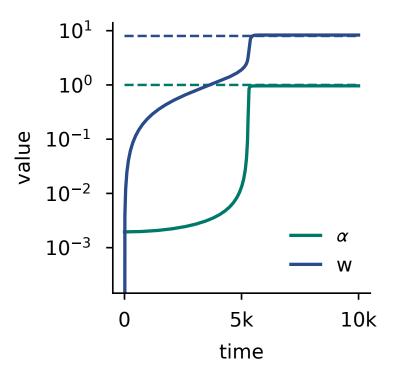
projection of W on W\*



# Learning dynamics



Exhibits sharp phase transitions



w learns before attention focuses on the relevant token

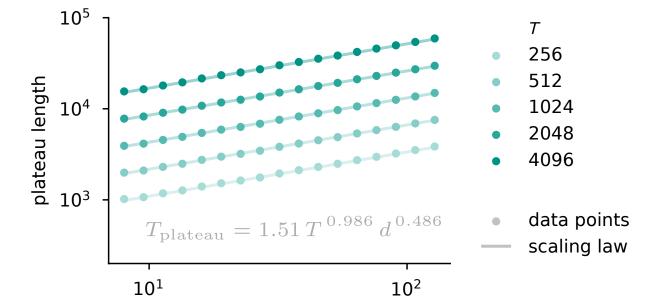
# Initial learning dynamics

Linearized dynamics at initialization

$$\begin{pmatrix} \dot{w} \\ \Delta a \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{d}T} \\ 0 \end{pmatrix} + \begin{pmatrix} 0 & \frac{1}{\sqrt{d}T} \\ \frac{1}{\sqrt{d}T} & 0 \end{pmatrix} \begin{pmatrix} w \\ \Delta a \end{pmatrix}$$

Escape time (time to decrease loss by  $\varepsilon$ )

$$T_{\varepsilon} = \frac{\sqrt{d}T}{2} \ln \left( \varepsilon \sqrt{d}T \right) \sim \sqrt{d}T$$



d

Almost perfect empirical fit!

Learning time increases when:

- Attention gets sparser
- Less signal to learn the feedforward mapping

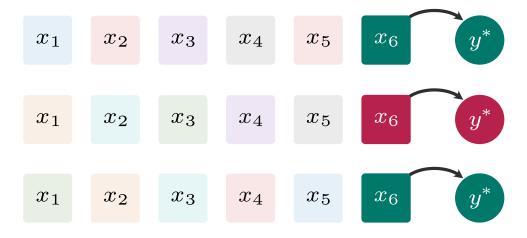
# Introducing repetition

#### In-context repetition



the relevant token  $x_T$  appears B times

#### **Cross-sample repetition**



the same  $x_T$  appears with probability p

#### Example.

In a Harry Potter chapter, [Harry Potter] appears multiple time within the context

#### Example.

In Harry Potter books, [Harry Potter] appears more often than [Sirius Black]

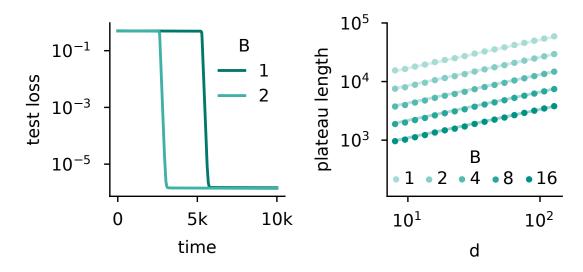
# Understanding in-context repetition

#### In-context repetition

Reduces the sparsity of the target attention, so speeds up emergence

the relevant token  $x_T$  appears B times

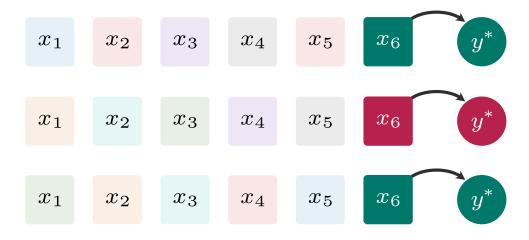
#### In-context repetition



$$T_{\text{plateau}} = 1.51 \, d^{0.49} \, \left(\frac{T}{B}\right)^{0.99}$$

# Understanding cross-sample repetition

#### **Cross-sample repetition**



the same  $x_T$  appears with probability p

Cross-sample repetition speeds up emergence

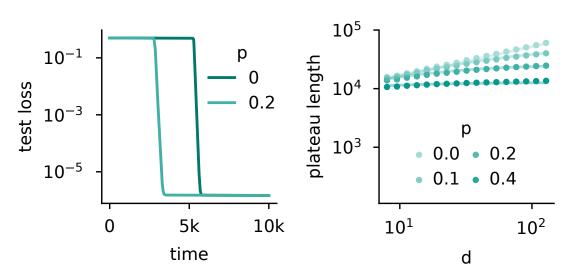
W learns faster on the repeated dimension

Attention learns faster overall because W provides better teaching signal on the repeated data

This speeds up the learning of W on non-repeated data, and thus learning overall

# Understanding cross-sample repetition

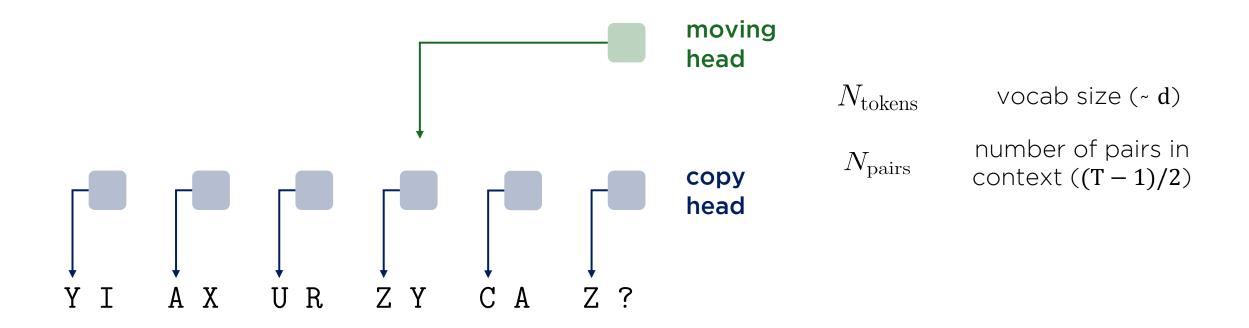
#### **Cross-sample repetition**



$$T_{\text{plateau}} = 2.15 \left( \frac{\sqrt{dT}}{\sqrt{p^2d + (1-p)^2}} \right)^{1.02}$$

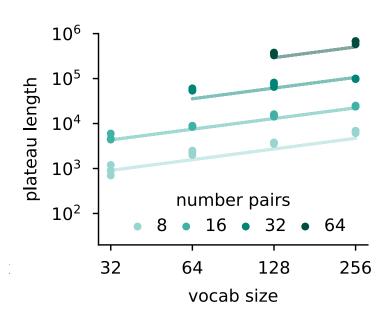
Main factor can be **derived theoretically** (similar analysis but with three variables)

### Validation on an in-context associative recall task



Combination of two sparse attention layers: we should be able to say something about it!

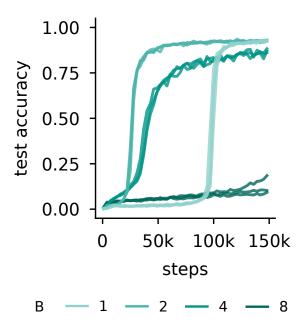
### Validation on the in-context associative recall task



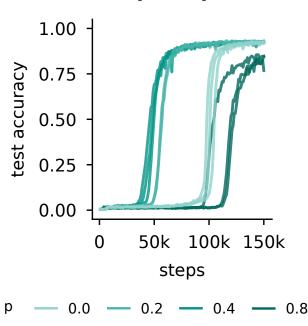
$$T_{\text{plateau}} = 0.55 \, N_{\text{tokens}}^{0.79} \, N_{\text{pairs}}^{2.25}$$

Same (qualitative) behavior as in the toy task

#### **In-context repetition**



#### **Cross-sample repetition**



Increasing in-context repetition is more efficient (cf. power law)
Repetition speeds up training, but leads to overfitting
Dynamics are messy, hard to get a clean power law

We propose a simple framework to think about **how long** it takes for **Transformers** to **learn** certain abilities: **sparse attention**.

### We explain why:

- 1. Sparse attention emerges.
- 2. Learning time increases as **sequence length increases** and as data gets more **diverse**.
- 3. Repetition can speed up learning.

