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Goal: LLM Reasoning
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1. KL Divergence Type:
e Forward KL(mqq||ms)
e Reverse KL(mgl|mog)
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2. KL Form:
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e Normalized
e Unnormalized (UKL /
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3. Loss Estimator:
e Fully Differentiable
e REINFORCE-style
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Regularized Policy Gradients

Regularization

Normalized (

L W.r.t. Toq)

Unnormalized (E w.r.t. m5q)

Forward KL D

Reverse KL <,

w(a:) (—R(:B) + Blog w(a:))]

_ w(z)R(z) — Blog m(a;)]
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[— w(z)R(z) + B(w(z) — logw(z) — 1)]
[ — w(z)R(z) + B(w(z) log w(z) — w(z) + 1)]
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REINFORCE-style Regularized Policy Gradients

Regularization Normalized (Tsampling = Told) Unnormalized (Tsampling = Told)
Forward KL _E [ SG (w(z)R(z) + B) log 7r9(:c)] _E [ SG (Zoa(w(z)R(z) — B(w(z) — 1)) log 779(:6)]
Reverse KL —E[SG (w(z) (R(z) — Blogw(z) — B))log m,(x)] —IE[SG (Zoaw(z)(R(z) — Blog w(z))) log m;(a:)]

w(x) = my(x)/my14(%), SG 1s stop-gradient
Experiments
e AIME24 accuracy mean@32 AIME25 mean@32
Method AIME24 AIME25

Last Best Last Best "
GRPO 0.3458 0.3677 | 0.2896  0.3042 ¢
DAPO 0.4063 0.4479 | 0.3510 0.3938
RPG-UFKL 0.4031 0.4396 | 0.3625 0.3979
RPG-URKL 0.3990 0.4219 | 0.3438 0.3792
RPG-REINFORCE-UFKL | 0.4281 0.4375 | 0.3771 0.4042
RPG-REINFORCE-URKL | 0.4458 0.4531 | 0.4125 0.4313

(a) AIME24 (b) AIME25
Method AIME24 AIME25 =

Last Best Last Best
GRPO 0.2563 0.2708 | 0.2323  0.2479
DAPO 0.3229 0.3281 | 0.2792 0.2844
RPG-UFKL 0.3427 0.3479 | 0.2833  0.2833
RPG-URKL 0.3260 0.3594 | 0.2677 0.2677 - -

(c) Reward (Critic Score) (d) Entropy (e) Response Length

RPG-REINFORCE-UFKL | 0.3396 0.3625 | 0.2927 0.3083 s b PG e REINFORCEStvlo Resularired Polion Craiont (RPC.REINFORCE
RPG-REINFORCE-URKL | 03188 03417 | 02792 02938 igure erformance of RPG and R RCE-Style Regularized Policy Gradient (RPG-R RCE)

methods compared to baselines with 4k context length.
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