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Goal

Design a sampling matrix A that:

els binary A € {—1, + 1}V (physical constraint)
* Highly underdetermined M << N  (application constraint)

* Requires few training images (application constraint)
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Common Approaches

Acquisition: Scrambled Hadamard Acquisition: Deep Learning1

Encoder y

A[M] Reconstruction: Deep Learning1
Reconstruction: Variational Regularisation = |Decoder
. .1 ,
% = argmin 3 [[Ax — |5 +a J(x) 7
xRN 2 i’ -

with J(x) = TV(x) = ||Vx||;
C< NIISE m4Dit




Common Approaches

Acquisition: Scrambled Hadamard Acquisition: Deep Learning1

Encoder ¢

@ Is binary A € {—1, + 1}MN Is binary A € {—1, + 1}V

Highly underdetermined M << N @ Highly underdetermined M < N

@ Requires few training images @ Requires few training images
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Our Contribution

We overcome current limitations with:

* Bilevel learning formulation:

' L(6) = 3 £(x,x(6; P(Ax) } here 6 = (A, a),
Ae{Hll,>11IO}1~M><N{ (6) ; (X %(0; P(Ax ))) where (A, )

1
such that x(0;y) € arg min §HAX —y|3 + aJ (x).
xRN

« Total Deep Variation' (TDV) as reqgulariser
« Surrogate gradient for binary constraint?
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Learning with Binary Constraints

Relax and Penalise’ Straight-Through Estimator’
- Relax the constraint to - Optimise over a latent matrix
M XN
A e [-1,1]77 Z ¢ RM*N where A = sgn(Z)

- Penalise with: - Use a surrogate gradient during
ro(A) = % S a2, backpropagation
b tanh'(Z)
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Results - Comparisons

0.85 -
32 -
0.80 A
30 -
0.75 A
28 -
0.70 -
% 26 - =
= 26 — 0.65 -
wn V)
o n
24 - 0.60 -
Learned - STE (TDV) Learned - STE (TDV)
29 - —&— Learned - RnP (TDV) 0.55 - - —8— Learned - RnP (TDV)
—8— Gaussian (TDV) .«"' —8— Gaussian (TDV)
—e— SH (TDV) 0.50 - St —e— SH (TDV)
201-® ) @ Gaussian (TV) | | et ®- Gaussian (TV)
o @ SH(TV) 0451 &= @ SH(TV)
18 1 1 1 1 1 1 1 1 1 1
128 256 512 1024 2048 128 256 512 1024 2048
(0.8%) (1.6%) (3.1%) (6.2%) (12.5%) (0.8%) (1.6%) (3.1%) (6.2%) (12.5%)
M (Sampling Ratio) M (Sampling Ratio)

" 1 il
)
p ’ 4
1 71
COmputatioNal Imaging as a training network for Smart biomedical dEvices a -



Gaussian Learned - RnP Learned - STE Ground Truth

(32.63, 0.812) (32.98, 0.826) (33. 49 0.840) (35. 66 0.884) (PSNR, SSIM)

Ordered by |
Learned - STE
PSNR J '

(27.75, 0.758) (27.59, 0.754)

C7“ N<ISE m4ii (20.24, 0.376) (20.55, 0.394) (21.36, 0.486) (22.67.0491) (PSR, SSIM)



Results - Comparison to E2E Deep Learning

n = 500 n = 5000 n = 50000 Ground Truth
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(20.92,0.341) (27.60,0.598) (29.08,0.717) (PSNR, SSIM)
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- A massive thanks to the amazing
CO"CIUSlOnS people that made this possible:
Robust pattern design for SPI

Alexand
High PSNR and SSIM in data scarce settings S:ﬁ?;r
ul STE better binarisation choice to RnP
_ _ Zeljko
Future directions: Kereta
- Analysis of surrogate STE gradient
- Learned regularisers ablations (e.g. WCRR)
- Slope of surrogate gradient investigation Simon
Arridge
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