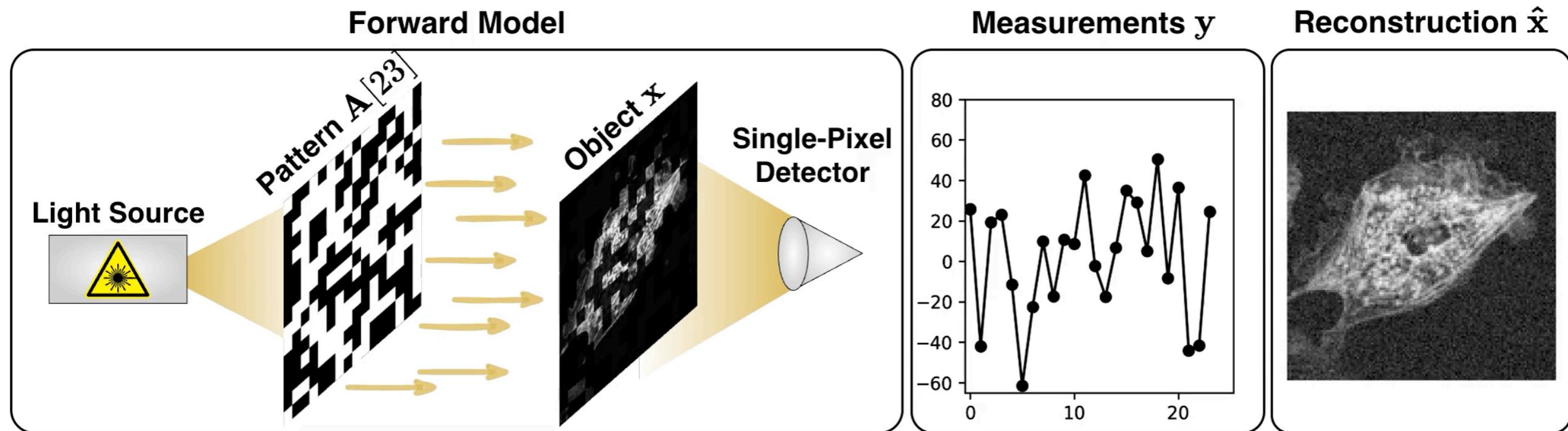


Learning Binary Sampling Patterns for Single-Pixel Imaging using Bilevel Optimisation

Serban Cristian Tudosie Alexander Denker

Željko Kereta Simon Arridge

Single-Pixel Imaging



$$P(\mathbf{Ax}) = \mathbf{y}$$

$$\hat{\mathbf{x}} = \arg \min_{\mathbf{x} \in \mathbb{R}^N} \frac{1}{2} \|\mathbf{Ax} - \mathbf{y}\|_2^2 + \alpha \mathcal{J}(\mathbf{x})$$

Goal

Design a sampling matrix \mathbf{A} that:

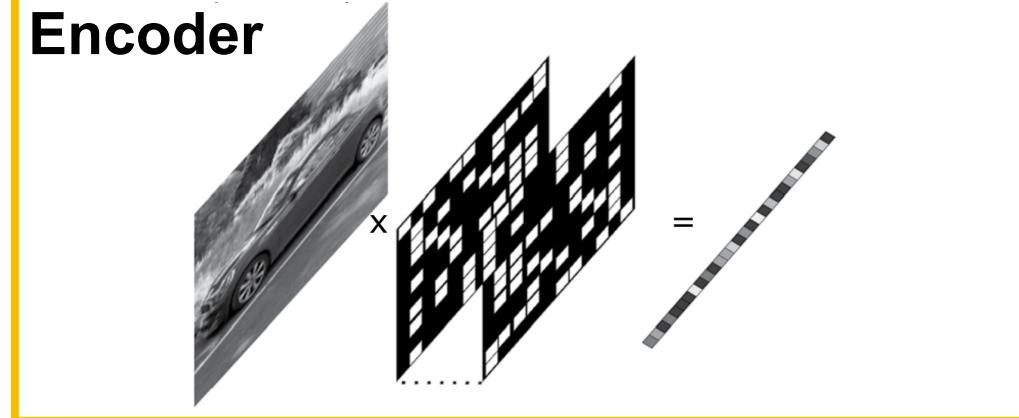
- **Is binary** $\mathbf{A} \in \{-1, +1\}^{M \times N}$ (physical constraint)
- **Highly underdetermined** $M \ll N$ (application constraint)
- **Requires few training images** (application constraint)

Common Approaches

Acquisition: Scrambled Hadamard

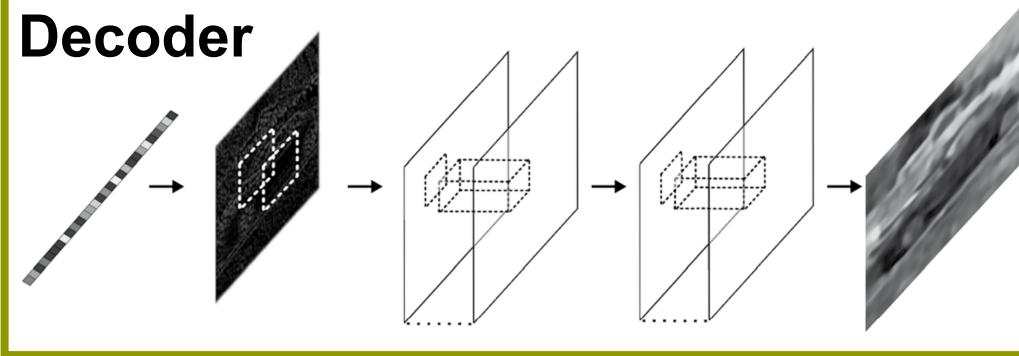
Acquisition: Deep Learning¹

Encoder



Reconstruction: Deep Learning¹

Decoder



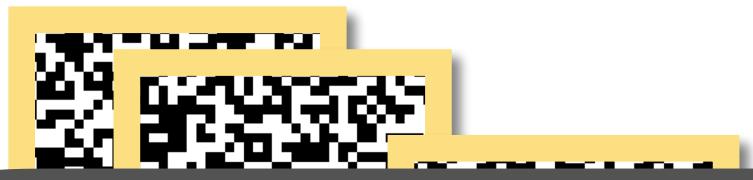
Reconstruction: Variational Regularisation

$$\hat{\mathbf{x}} = \arg \min_{\mathbf{x} \in \mathbb{R}^N} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \alpha \mathcal{J}(\mathbf{x})$$

with $\mathcal{J}(\mathbf{x}) = \text{TV}(\mathbf{x}) = \|\nabla \mathbf{x}\|_1$

Common Approaches

Acquisition: Scrambled Hadamard



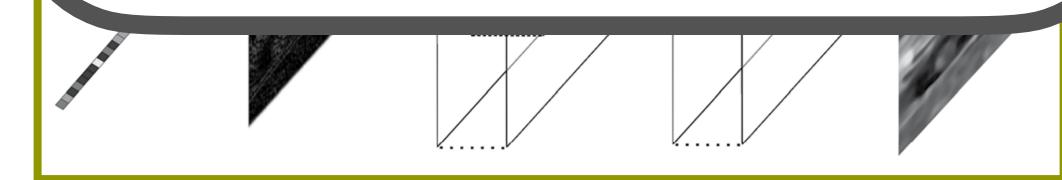
- Is binary $A \in \{-1, +1\}^{M \times N}$
- Highly underdetermined $M \ll N$
- Requires few training images

with $\mathcal{J}(\mathbf{x}) = \text{TV}(\mathbf{x}) = \|\nabla \mathbf{x}\|_1$

Acquisition: Deep Learning¹

Encoder

- Is binary $A \in \{-1, +1\}^{M \times N}$
- Highly underdetermined $M \ll N$
- Requires few training images



Reconstruction

Scrambled Hadamard

Our Contribution

We overcome current limitations with:

- Bilevel learning formulation:

$$\min_{\substack{\mathbf{A} \in \{-1,1\}^{M \times N} \\ \alpha > 0}} \left\{ L(\theta) := \sum_{i=1}^n \mathcal{L}\left(\mathbf{x}^{(i)}, \hat{\mathbf{x}}(\theta; P(\mathbf{A}\mathbf{x}^{(i)}))\right) \right\}, \text{ where } \theta = (\mathbf{A}, \alpha),$$

such that $\hat{\mathbf{x}}(\theta; \mathbf{y}) \in \arg \min_{\mathbf{x} \in \mathbb{R}^N} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \alpha \mathcal{J}(\mathbf{x})$.

- Total Deep Variation¹ (TDV) as regulariser
- Surrogate gradient for binary constraint²

¹Erich Kobler et al. "Total Deep Variation for Linear Inverse Problems". In: Proceedings of the IEEE/CVF CVPR 2020.

²Yoshua Bengio et al. "Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation" 2013.

Learning with Binary Constraints

Relax and Penalise¹

- Relax the constraint to

$$\mathbf{A} \in [-1, 1]^{M \times N}$$

- Penalise with:

$$r_\epsilon(\mathbf{A}) = \frac{1}{\epsilon} \sum_{i,j} 1 - a_{i,j}^2$$

Straight-Through Estimator²

- Optimise over a latent matrix

$$\mathbf{Z} \in \mathbb{R}^{M \times N} \quad \text{where } \mathbf{A} = \text{sgn}(\mathbf{Z})$$

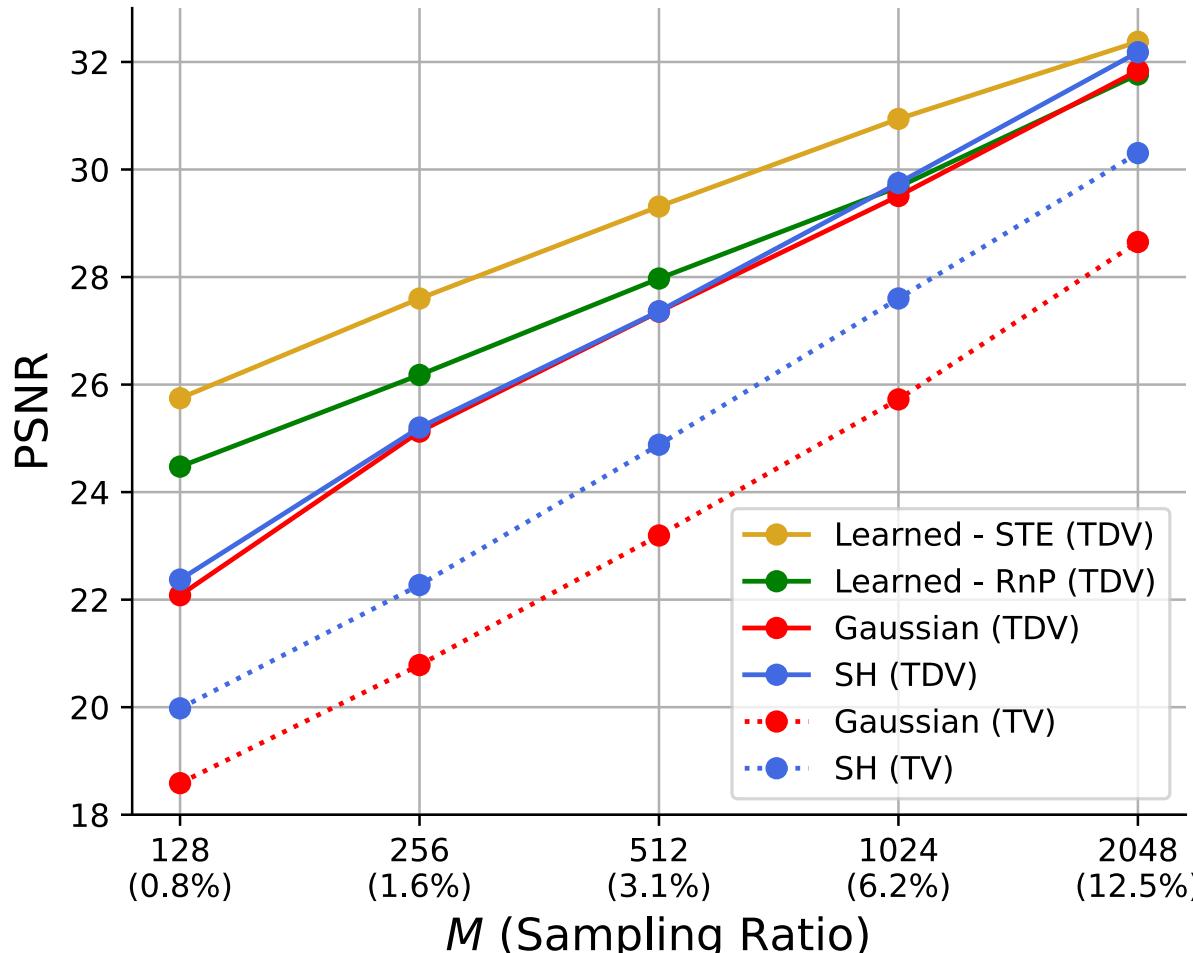
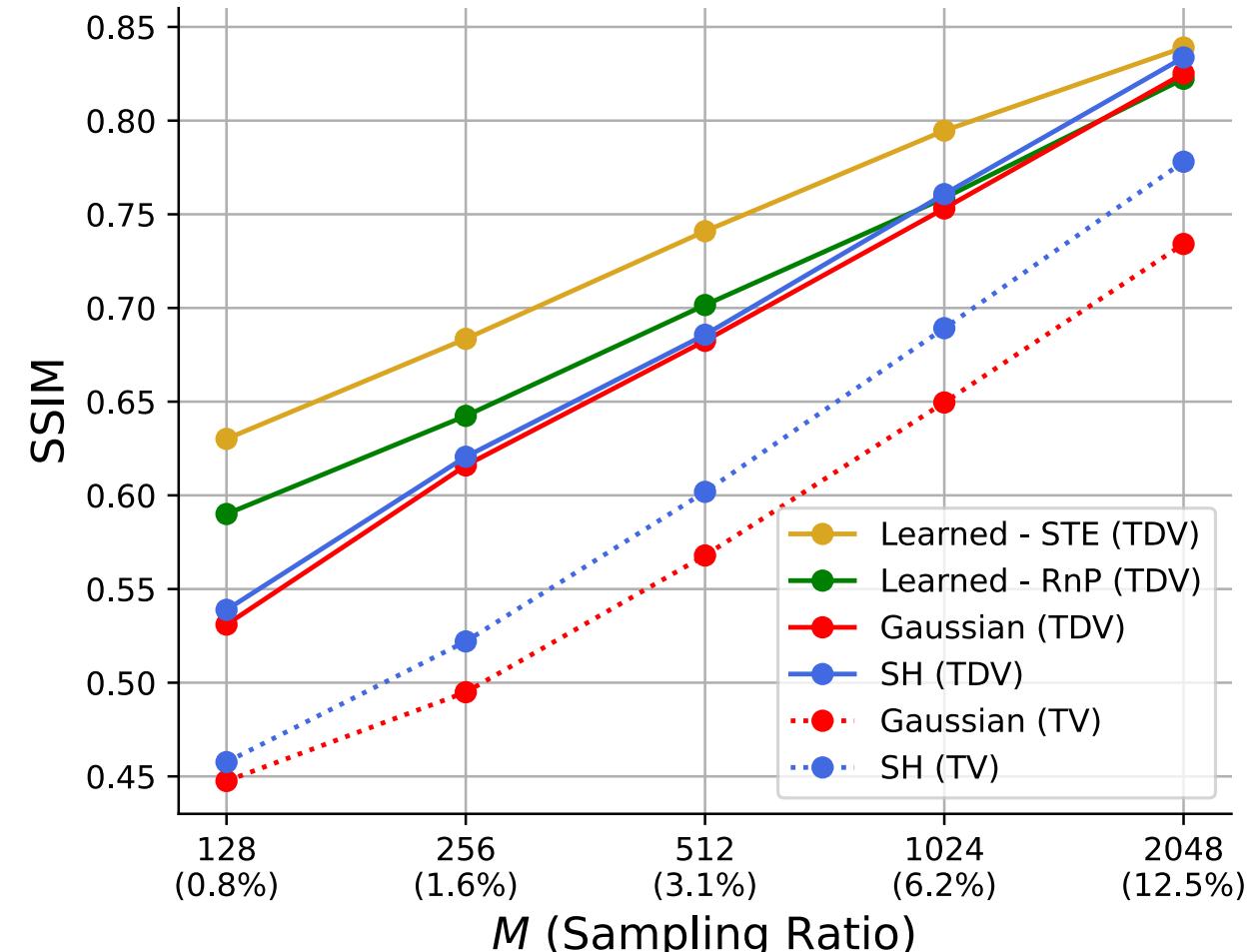
- Use a surrogate gradient during backpropagation

$$\tanh'(\mathbf{Z})$$

¹S. Lucidi and F. Rinaldi. "Exact Penalty Functions for Nonlinear Integer Programming Problems". *Journal of Optimization Theory and Applications* 2010.

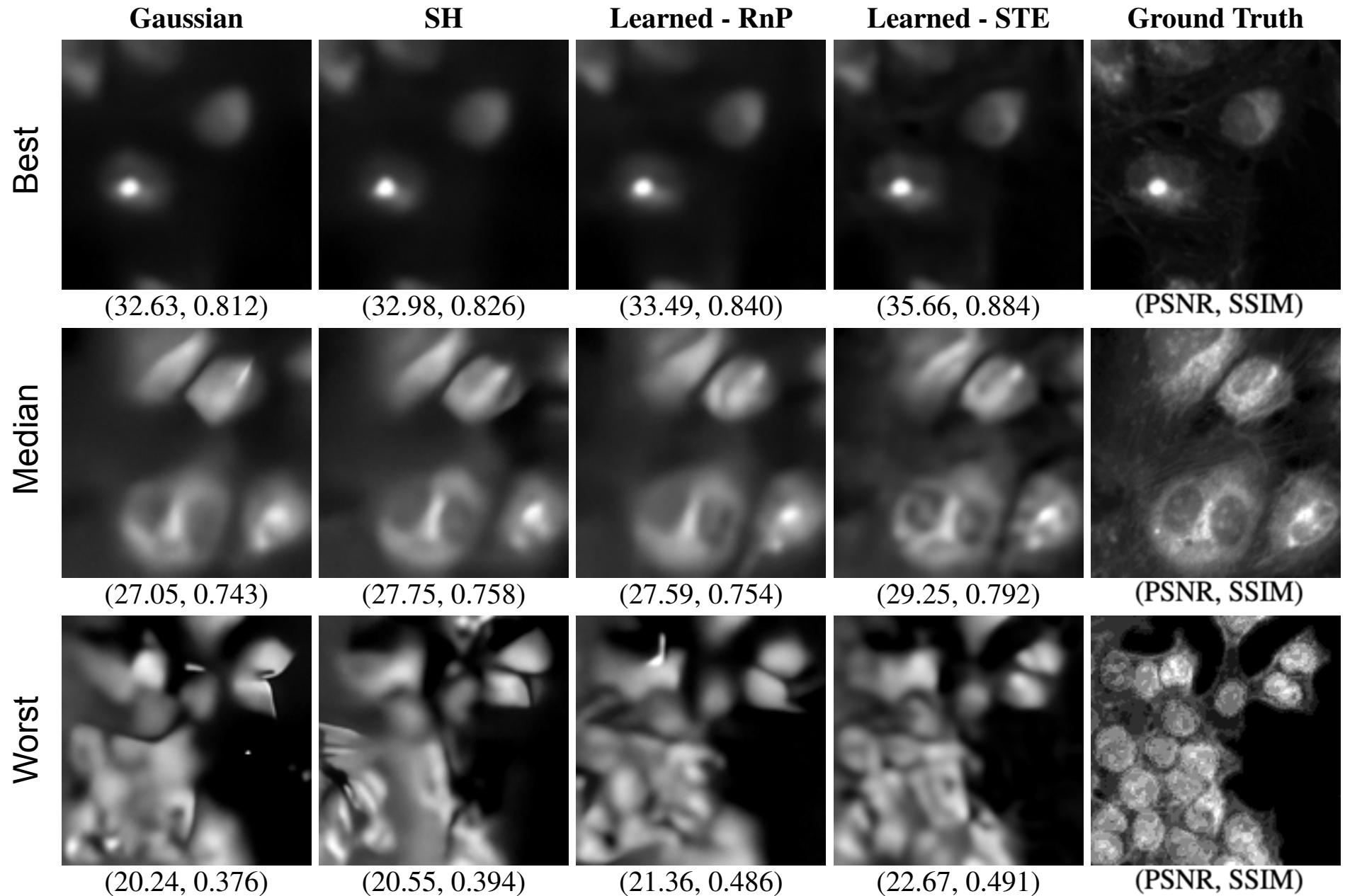
²Yoshua Bengio et al. "Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation" 2013.

Results - Comparisons

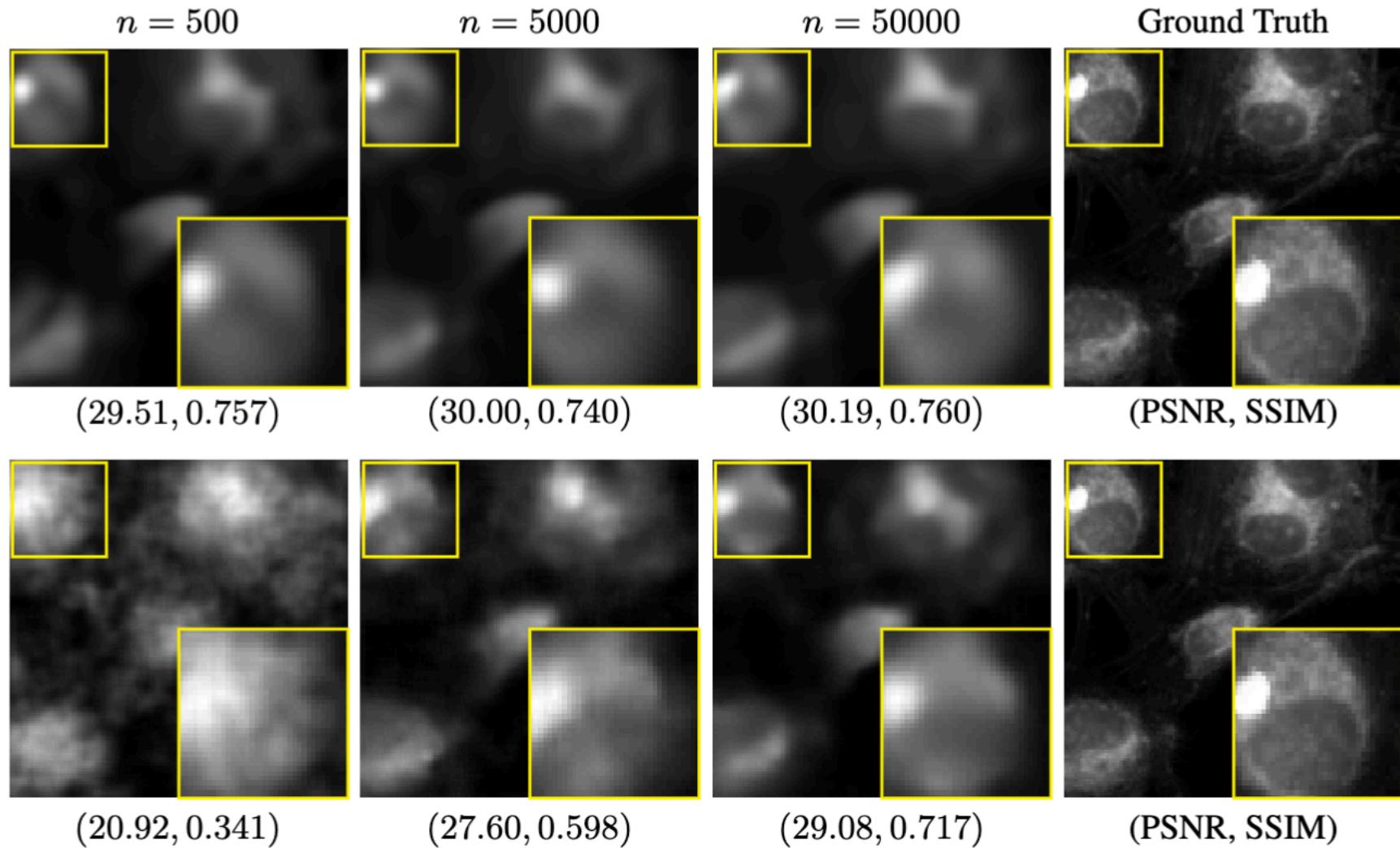
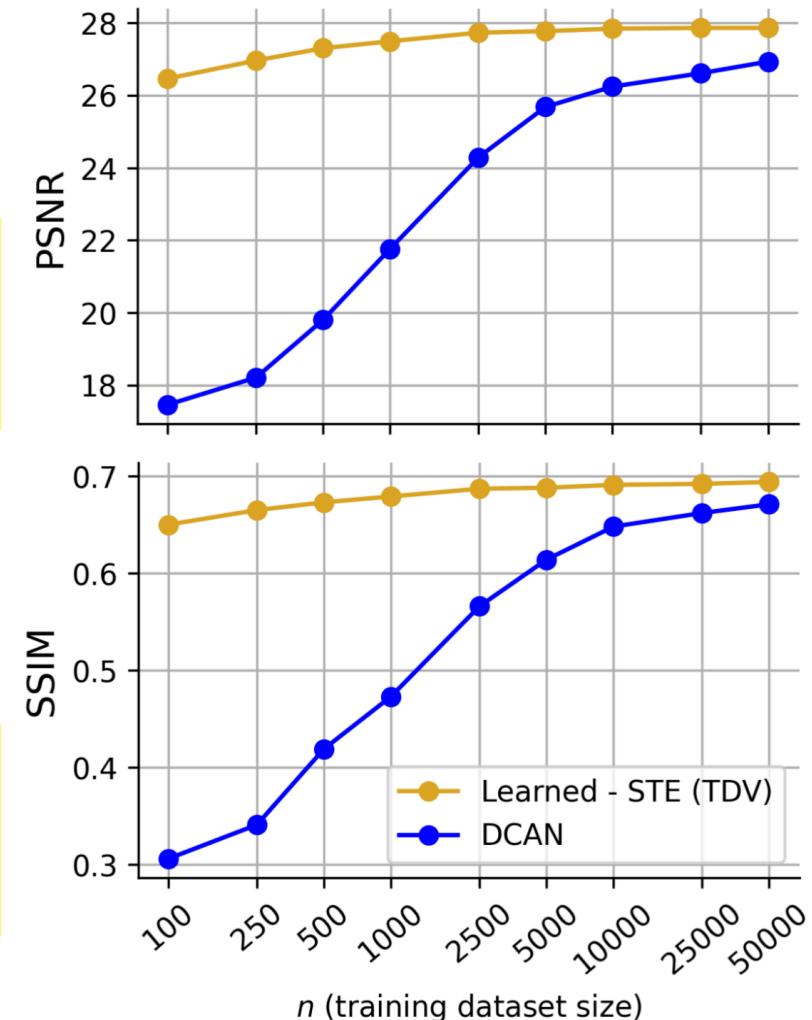


Results

Ordered by
Learned - STE
PSNR



Results - Comparison to E2E Deep Learning



Conclusions

- ✓ Robust pattern design for SPI
- ✓ High PSNR and SSIM in **data scarce settings**
- 📊 STE better **binarisation** choice to RnP

Future directions:

- Analysis of surrogate STE gradient
- Learned regularisers ablations (e.g. WCRR)
- Slope of surrogate gradient investigation

A massive thanks to the amazing people that made this possible:

Alexander Denker

Željko Kereta

Simon Arridge