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P (Ax) = y

Single-Pixel Imaging

COmputatioNal Imaging as a training network for Smart biomedical dEvices



• Is binary                    (physical constraint) 

• Highly underdetermined        (application constraint) 

• Requires few training images           (application constraint)

A ∈ {−1, + 1}M×N

M ≪ N

Goal 

Design a sampling matrix  that:A
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Common Approaches
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Reconstruction: Variational Regularisation
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J (x) = TV(x) = ||→x||1

Acquisition: Scrambled Hadamard Acquisition: Deep Learning1

Reconstruction: Deep Learning1

Encoder

Decoder

Catherine F. Higham et al. “Deep Learning for Real-Time Single-Pixel Video” Scientific Reports 2018 1
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🟢  Is binary                  

🟡  Highly underdetermined     

🟢  Requires few training images               

A ∈ {−1, + 1}M×N

M ≪ N

🟡  Is binary                  

🟢  Highly underdetermined     

🔴  Requires few training images               

A ∈ {−1, + 1}M×N

M ≪ N



We overcome current limitations with:

This work focuses on designing optimal illumination patterns for image modalities, like single-pixel
fluorescence microscopy, that impose physical constraints on admissible patterns. Specifically, we
consider pattens A whose elements are restricted to {→1, 1}. These patterns are standard in SPI
and are acquired by measuring a pair of complementary {0, 1} patterns and subtracting the results.
In SPI systems, values 0 and 1 in the sensing matrix correspond to blocking and transmitting light,
respectively. We tackle this problem by framing pattern design as a bilevel optimisation problem,
where we jointly learn the optimal {→1, 1} patterns and specific hyperparameters of the reconstruction
process. This approach has been successfully employed in domains like magnetic resonance imaging
(MRI), sparse recovery or model selection [23, 19, 4]. Our main contributions are:

• Use the Straight-Through Estimator (STE) [3] to handle the discrete nature of pattern optimisation;
• Integrate a pre-trained Total Deep Variation (TDV) regulariser [15] in the lower-level problem to

enhance reconstruction quality.

Related Work Higham et al. [11] introduced the first data-driven framework for learning SPI
illumination patterns, showing that learned patterns can improve both reconstruction quality and
compression efficiency. Their method formulates pattern design as training an autoencoder, where
the linear encoder defines the illumination patterns and the nonlinear decoder performs image
reconstruction. To improve the decoder, Wu et al. [26] propose an unrolling approach, while Wang et
al. propose a physics-informed architecture based on differential ghost imaging [24]. Optimising
sampling patterns also arises in different applications, such as minimising matrix coherence for
compressive sensing [1] and k-space sampling in MRI [21, 23]. In MRI, sampling pattern design
requires binary masks, for which the (Gumbel) STE [14] is commonly employed [19, 27].

2 Learning Sampling Patterns via Bilevel Learning

We aim to find an optimal sensing matrix A by minimising the reconstruction error over a representa-
tive dataset of images {x(i)}ni=1. We consider a bilevel problem given by

min
A→{↑1,1}M→N

ω>0

{
L(ω) :=

n∑

i=1

L
(
x(i), x̂

(
ω;P (Ax(i))

))}
, where ω = (A,ε), (2)

such that x̂(ω;y) ↑ argmin
x→RN

1

2
↓Ax→ y↓22 + εJ (x). (3)

The upper-level problem (2) aims to find a sensing matrix A and the regularisation parameter
ε > 0 that minimise the discrepancy between ground truth data and reconstructions from noisy
measurements. The reconstructions are obtained by solving the lower-level problem (3), which is
defined by a reconstruction method x̂(ω; ·) for a given A and ε. The success of bilevel optimisation
relies on the quality of lower-level solutions: if the regulariser J is a poor match for the data, the
learned patterns will be suboptimal. Prior work has often relied on classical regularisers like Total
Variation (TV) [23] or the ϑ1-norm [25]. Instead, we leverage TDV [15], a powerful, data-driven
regulariser that has shown superior performance over TV in many linear inverse problems.

The key challenge in the bilevel formulation is that the upper-level problem (2) is over a discrete set,
making standard gradient-based methods inapplicable. We explore two methods to address this.

Relax and Penalise (RnP) is an approach that replaces the binary constraint A ↑ {→1, 1}M↓N with
A ↑ [→1, 1]M↓N and drives the matrix entries towards {→1, 1} by adding a penalty term

rε(A) =
1

ϖ

∑

i,j

1→ a2i,j . (4)

It follows from [17, Theorem 1] that with an appropriate schedule of the penalty strength ϖ > 0, the
relaxed problem has the same minimiser as the binary one. However, in practice, this requires careful
parameter tuning. The constraint A ↑ [→1, 1]M↓N can be enforced by projecting the matrix entries
onto the constraint set after each gradient step or by a reparameterisation A = tanh(Z), applied
entry-wise, using a real-valued latent matrix Z ↑ RM↓N . While these methods allow computing the
gradient exactly, a notable drawback is that A is not strictly binary during optimisation.

2

• Total Deep Variation  (TDV) as regulariser  

• Surrogate gradient for binary constraint

1

2

• Bilevel learning formulation:

Erich Kobler et al. “Total Deep Variation for Linear Inverse Problems”. In: Proceedings of the IEEE/CVF CVPR 2020. 
Yoshua Bengio et al. “Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation” 2013. 
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Our Contribution

COmputatioNal Imaging as a training network for Smart biomedical dEvices



Straight-Through Estimator  

- Optimise over a latent matrix  

                        where  

- Use a surrogate gradient during 
backpropagation  

2
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tanh→(Z)

S. Lucidi and F. Rinaldi. “Exact Penalty Functions for Nonlinear Integer Programming Problems”. Journal of Optimization Theory and Applications 2010. 
Yoshua Bengio et al.“Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation” 2013. 
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Learning with Binary Constraints
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Relax and Penalise  

- Relax the constraint to  

- Penalise with: 

1

This work focuses on designing optimal illumination patterns for image modalities, like single-pixel
fluorescence microscopy, that impose physical constraints on admissible patterns. Specifically, we
consider pattens A whose elements are restricted to {→1, 1}. These patterns are standard in SPI
and are acquired by measuring a pair of complementary {0, 1} patterns and subtracting the results.
In SPI systems, values 0 and 1 in the sensing matrix correspond to blocking and transmitting light,
respectively. We tackle this problem by framing pattern design as a bilevel optimisation problem,
where we jointly learn the optimal {→1, 1} patterns and specific hyperparameters of the reconstruction
process. This approach has been successfully employed in domains like magnetic resonance imaging
(MRI), sparse recovery or model selection [23, 19, 4]. Our main contributions are:

• Use the Straight-Through Estimator (STE) [3] to handle the discrete nature of pattern optimisation;
• Integrate a pre-trained Total Deep Variation (TDV) regulariser [15] in the lower-level problem to

enhance reconstruction quality.

Related Work Higham et al. [11] introduced the first data-driven framework for learning SPI
illumination patterns, showing that learned patterns can improve both reconstruction quality and
compression efficiency. Their method formulates pattern design as training an autoencoder, where
the linear encoder defines the illumination patterns and the nonlinear decoder performs image
reconstruction. To improve the decoder, Wu et al. [26] propose an unrolling approach, while Wang et
al. propose a physics-informed architecture based on differential ghost imaging [24]. Optimising
sampling patterns also arises in different applications, such as minimising matrix coherence for
compressive sensing [1] and k-space sampling in MRI [21, 23]. In MRI, sampling pattern design
requires binary masks, for which the (Gumbel) STE [14] is commonly employed [19, 27].
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The upper-level problem (2) aims to find a sensing matrix A and the regularisation parameter
ε > 0 that minimise the discrepancy between ground truth data and reconstructions from noisy
measurements. The reconstructions are obtained by solving the lower-level problem (3), which is
defined by a reconstruction method x̂(ω; ·) for a given A and ε. The success of bilevel optimisation
relies on the quality of lower-level solutions: if the regulariser J is a poor match for the data, the
learned patterns will be suboptimal. Prior work has often relied on classical regularisers like Total
Variation (TV) [23] or the ϑ1-norm [25]. Instead, we leverage TDV [15], a powerful, data-driven
regulariser that has shown superior performance over TV in many linear inverse problems.
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It follows from [17, Theorem 1] that with an appropriate schedule of the penalty strength ϖ > 0, the
relaxed problem has the same minimiser as the binary one. However, in practice, this requires careful
parameter tuning. The constraint A ↑ [→1, 1]M↓N can be enforced by projecting the matrix entries
onto the constraint set after each gradient step or by a reparameterisation A = tanh(Z), applied
entry-wise, using a real-valued latent matrix Z ↑ RM↓N . While these methods allow computing the
gradient exactly, a notable drawback is that A is not strictly binary during optimisation.
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A → [↑1, 1]M→N



Results - Comparisons
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Results

A Additional Results

Table 1: PSNR and SSIM for sampling patterns with respect to M , using the TV regulariser.
M = 128 M = 256 M = 512 M = 1024 M = 2048

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Gaussian 18.59 0.448 20.78 0.495 23.19 0.568 25.72 0.650 28.65 0.734
SH 19.98 0.458 22.27 0.522 24.88 0.602 27.60 0.689 30.31 0.778

Learned - RnP 23.48 0.544 24.56 0.579 25.98 0.630 27.64 0.689 29.89 0.765
Learned - STE 24.62 0.580 26.59 0.641 28.14 0.697 29.61 0.752 30.95 0.797

Table 2: PSNR and SSIM for sampling patterns with respect to M , using the TDV regulariser.
M = 128 M = 256 M = 512 M = 1024 M = 2048

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Gaussian 22.08 0.531 25.13 0.616 27.36 0.682 29.51 0.753 31.84 0.825
SH 22.37 0.529 25.20 0.621 27.36 0.686 29.75 0.761 32.18 0.834

Learned - RnP 24.47 0.590 26.18 0.642 27.97 0.702 29.68 0.759 31.77 0.822
Learned - STE 25.75 0.630 27.60 0.684 29.31 0.741 30.94 0.795 32.38 0.839

Gaussian

(32.63, 0.812)

SH

(32.98, 0.826)

Learned - RnP

(33.49, 0.840)

Learned - STE

(35.66, 0.884)

Ground Truth

(27.05, 0.743) (27.75, 0.758) (27.59, 0.754) (29.25, 0.792)

(20.24, 0.376) (20.55, 0.394) (21.36, 0.486) (22.67, 0.491)

Figure 4: Comparison of the different sampling patterns for M = 512 and the TDV regulariser. We
order the rows by best, median, and worst reconstruction PSNR of Learned - STE. We report the
reconstruction quality metrics in brackets (PSNR, SSIM).
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Results - Comparison to E2E Deep Learning
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Conclusions

Alexander 
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A massive thanks to the amazing 
people that made this possible:

✅ Robust pattern design for SPI 

✅ High PSNR and SSIM in data scarce settings  

📊 STE better binarisation choice to RnP 

Future directions: 

- Analysis of surrogate STE gradient 
- Learned regularisers ablations (e.g. WCRR) 
- Slope of surrogate gradient investigation


