

# A Dual-Branch Convolutional Neural Network with Gated Recurrent Units Network for Enhanced Multimodal Stress Monitoring from Wearable Physiological Signals

Md Rokonuzzaman Mim<sup>1</sup> Md Santo Ali<sup>1</sup>, Mohammad Abdul Motin<sup>1</sup>, Mufti Mahmud<sup>2</sup>

<sup>1</sup>Rajshahi University of Engineering and Technology, Bangladesh, <sup>2</sup>King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

# A Dual-Branch Convolutional Neural Network with Gated Recurrent Units Network for Enhanced Multimodal Stress Monitoring from Wearable Physiological Signals



Md Rokonuzzaman Mim<sup>1</sup> Md Santo Ali<sup>1</sup>, Mohammad Abdul Motin<sup>1</sup>, Mufti Mahmud<sup>2</sup>

<sup>1</sup>Rajshahi University of Engineering and Technology, Bangladesh, <sup>2</sup>King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

## Objectives

- Design a **lightweight** deep learning model for stress detection.
- Optimize for real-time inference on wearable devices.
- Use raw **BVP** and **EDA** signals as direct input.
- Avoid **hand-crafted** features to ensure simplicity and generalizability.

## Materials and Methods

### Dataset

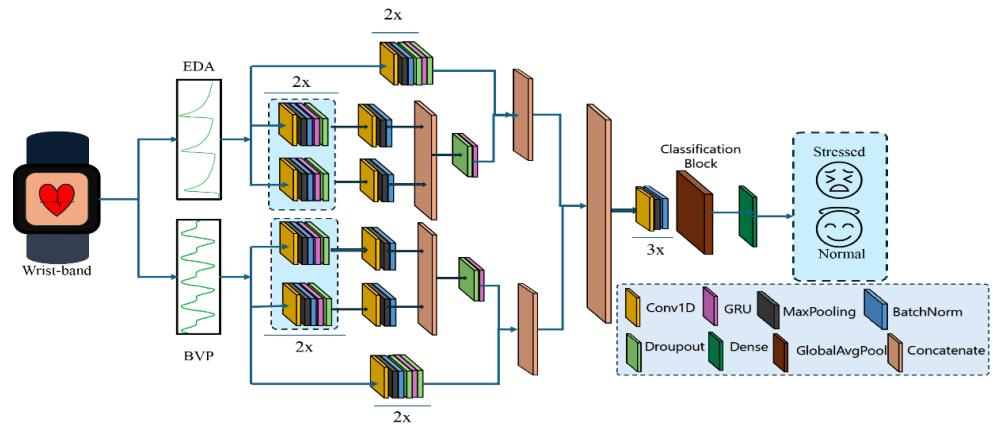
- Utilized the publicly available **WESAD** (Wearable Stress and Affect Detection) dataset [1].
- Includes BVP and EDA signals sampled at **64 Hz** and **4 Hz** respectively from **15 subjects**.

### Signal Preprocessing

- **30s** non-overlapping segments.
- **Normalization** (zero mean, unit variance).
- Sliding window-based **minority class augmentation**.

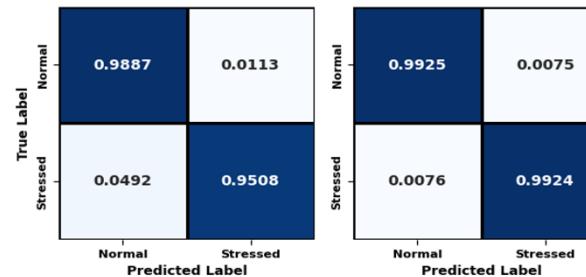
### Deep Learning Model

- Implements a dual-path architecture.
- Contains only **.43M** parameters (**1.64 MB**).



**Figure 1:** Architecture of the proposed lightweight deep learning model for stress monitoring.

## Results



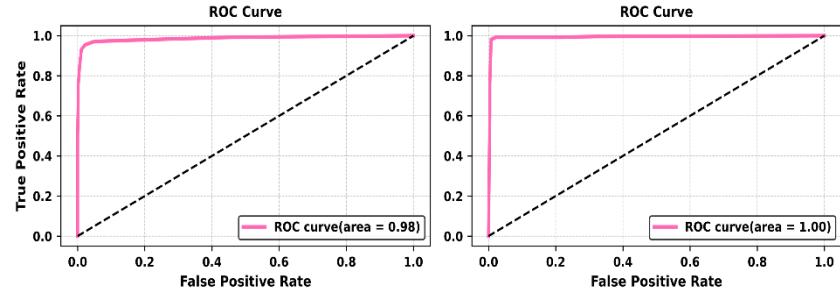
**Figure 2:** Normalized confusion matrices of the LOSO cross validation without (left) and with augmentation (right).

## Results (Contd')

**Table I:** The performance scores using LOSO cross-validation, with and without augmentation, are reported for accuracy, F1 score, specificity, sensitivity, AUC, and Cohen's kappa (k) in (%).

| Aug | Acc   | Spe   | Sen   | F1    | AUC   | k     |
|-----|-------|-------|-------|-------|-------|-------|
| No  | 97.53 | 98.87 | 95.08 | 96.14 | 98.47 | 94.34 |
| Yes | 99.27 | 99.25 | 99.29 | 99.97 | 99.68 | 98.40 |

- Strong validation performance was achieved.
- Data augmentation significantly enhanced the results.



**Figure 3:ROC curves showing AUC values of 0.98 for without augmentation (left) and 0.99 for with augmentation(right), highlighting the model's robust performance.**

## Discussion

**Table II:** Ablation study results showing the performance of individual signals (EDA and BVP) instress classification. Accuracy (Acc), specificity (Spe), sensitivity (Sen), F1-score (F1), AUC, andCohen's  $\kappa$  are reported in percentages (%).

| Signal    | Acc   | Spe   | Sen   | F1    | AUC   | k     |
|-----------|-------|-------|-------|-------|-------|-------|
| BVP       | 97.37 | 98.11 | 96.21 | 96.01 | 98.93 | 94.05 |
| EDA       | 93.55 | 94.34 | 92.05 | 90.47 | 95.95 | 85.61 |
| BVP + EDA | 99.27 | 99.25 | 99.29 | 99.97 | 99.68 | 98.40 |

- Multimodal BVP+EDA delivers the best overall results, surpassing single-signal models.

**Table III:** Comparison with existing literature.

| Study     | Dataset | Signal             | Accuracy |
|-----------|---------|--------------------|----------|
| [2]       | WESAD   | BVP, EDA,ACC, TEMP | 87.12    |
| [3]       | WESAD   | EDA, EEG,PPG       | 87.40    |
| [4]       | WESAD   | PPG                | 94.90    |
| This Work | WESAD   | EDA, BVP           | 99.27    |

- Our method achieves the highest accuracy compared to existing studies.

## Conclusions

- Lightweight CNN-GRU model using BVP signals.
- Achieves 99.27% accuracy and strong overall performance.
- Promising for continuous, non-invasive stress monitoring.
- Future work on multi-class classification and deployment on resource constrained devices.

## Bibliography

- [1] Schmidt, P., Reiss, A., Duerichen, R., Marberger, C., and Van Laerhoven, K. Introducing WESAD, a multimodal dataset for wearable stress and affect detection. In *Proceedings of the 2018 ACM International Conference on Multimodal Interaction (ICMI)*, pp. 400–408, 2018.
- [2] P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, and K. Van Laerhoven, “Introducing wesad,a multimodal dataset for wearable stress and affect detection,” in Proceedings of the 20th ACMinternational conference on multimodal interaction, pp. 400–408, 2018.
- [3] P. Siirtola, “Continuous stress detection using the sensors of commercial smartwatch,” in Adjunctproceedings of the 2019 ACM international joint conference on pervasive and ubiquitouscomputing and proceedings of the 2019 ACM international symposium on wearable computers,pp. 1198–1201, 2019.
- [4] M. S. Ali, M. A. Motin, and M. Mahmud, “A dual path hybrid convolutional neural networkand bidirectional long-short term memory approach for ppg-based stress monitoring,” in 4thMuslims in ML Workshop co-located with ICML 2025.