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Objectives \ / o

Design a lightweight deep learning model for stress detection.
Optimize for real-time inference on wearable devices.

Use raw BVP and EDA signals as direct input.

Avoid hand-crafted features to ensure simplicity and generalizability.

‘Wrisi-band

Materials and Methods

Dataset

Utilized the publicly available WESAD (Wearable Stress and Affect Detection)

dataset [1]. Figure 1: Architecture of the proposed lightweight deep learning model for stress
Includes BVP and EDA signals sampled at 64 Hz and 4 Hz respectively from 15 monitoring.
subjects. Results

Signal Preprocessing
30s non-overlapping segments.
Normalization (zero mean, unit variance).
Sliding window-based minority class augmentation.

Deep Learning Model
Implements a dual-path architecture. Norrmal

Normal
Normal

True Label

Stressed

Stres:

Normal Stressed

. Predicted Label Predicted Label
Contains only .43M parameters (1.64 MB).

Figure 2: Normalized confusion matrices of the LOSO cross validation without
/ (left) and with augmentation (right). /




Results (Contd?)

Table 1: The performance scores using LOSO cross-validation, with and without
augmentation, are reported for accuracy, F1 score, specificity, sensitivity, AUC, and
Cohen’s kappa (k) in (%).

Aug Acc Spe Sen F1 AUC
No 97.53 98.87 95.08 96.14 98.47 94.34
Yes 99.27 99.25 99.29 99.97 99.68 98.40
a Strong validation performance was achieved.
a Data augmentation significantly enhanced the results.
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Figure 3:ROC curves showing AUC values of 0.98 for without augmentation (left)
and 0.99 for with augmentation(right), highlighting the model’s robust
performance.

True Positive Rate
e
~

e
o

Discussion
Table 11: Ablation study results showing the performance of individual signals (EDA and
BVP) instress classification. Accuracy (Acc), specificity (Spe), sensitivity (Sen), F1-score
(F1), AUC, andCohen’s « are reported in percentages (%).

Signal Acc Spe Sen F1 AUC
BVP 97.37 98.11 96.21 96.01 98.93 94.05
EDA 93.55 94.34 92.05 90.47 95.95 85.61
BVP + EDA 99.27 99.25 99.29 99.97 99.68 98.40

O Multimodal BVP+EDA delivers the best overall results, surpassing single-signal

models.
Table I11: Comparison with existing literature.

Study Dataset Signal Accuracy
BVP, EDA,ACC,
[2] WESAD TEMP 87.12
[3] WESAD EDA, EEG,PPG 87.40
[4] WESAD PPG 94.90
This Work WESAD EDA, BVP 99.27

U Our method achieves the highest accuracy compared to existing studies.

Conclusions

Q Lightweight CNN-GRU model using BVP signals.
O Achieves 99.27% accuracy and strong overall performance.
Q Promising for continuous, non-invasive stress monitoring.

Q Future work on multi-class classification and deployment on resource constrained

devices.
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