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From Rules to Pixels

A Decoupled Framework for Segmenting Human-Centric Rule Violations
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Problem Formulation

Objective:
Translate long-form textual appearance rules into accurate, pixel-level outputs that indicate which regions in an
Image do not satisfy the specified policy.

Motivation & Challenges:
e Many environments rely on written appearance guidelines that are contextual and culturally influenced
e Correct interpretation requires identifying specific body parts and checking if they are exposed or covered
e Current vision—language models only detect objects and lack explicit rule-logic execution
e Without this reasoning step, outputs become incorrect, non-auditable, and unreliable for deployment in
human-centered settings
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Prior Works and Gap

Limitations of Existing Approaches
e Grounding models focus on object matching, not rule interpretation
@ e VLMs cannot parse compositional logic in rules
e (e.g., "below the knee but above the ankle”)
e Their outputs are opaque, with no explanation of why a region is highlighted
e No benchmark evaluates human-centric rule grounding at pixel-level

How LaGPS Advances the Field

e Converts free-form rules into symbolic programs with explicit logical structure

e Executes program reasoning over visual primitives (body-parts, skin regions, etc.)
e (Generates accurate and auditable pixel-level results

e Handles conditional, context-dependent semantics that prior VLMs cannot
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Monolith vs Decoupled
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Semantic - Symbolic Gap
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Neuro-Symbolic Framework (LaGPS)
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Neuro-Symbolic Framework (LaGPS)

We don’t “predict” the mask

we “compute” it.



Semantic Interpreter + Example Program

e |Input: A text rule like “Women must cover their
hair, neck, and arms.”

e Processing: The LLM reads this rule and turns
It into a structured program.

e Qutput: The program clearly shows which
body parts should be covered or visible,
making the system easy to explain and verify.

"Hair" false

"Face_Neck" false

"Arms" false

"Reasoning” "Hair, neck, and arms
must be covered
" Left_Upper_Leg " false

" Right_Upper_Leg " false
"Lower_Legs" true

"Torso" false

"Reasoning” "Upper legs and torso
must be covered; lower legs and feet
may be shown."



The HRS Benchmark (Dataset)

How do we evaluate the accuracy of Policy
Segmentation?

e No human dataset exists for precisely grounding policies
e Annotation based on logn-form textual policy

Human-centric Rule-violation Segmentation

e 1,100 Images
e 16 culturally diverse categories
e Pixel-level annotation of policy violation masks
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HRS Benchmark (Distribution)
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Measuring Segmentation

Rule Adherence Score (RAS)

RAS = Dice x (1 — FPR)

e Avoid over-segmentation by marking entire people as violations
e Penalize blunt behaviors (False Positives) - “hallucinated violations”

12



Results (mloU)
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Qualitative Comparison of Segmentation Results

Dense Clip Grounded Dino Our Model

raw mage o Clip seg Dense Clip Grounded Dino Our Model

’____________________________N

S o e e e e e e e e e o o S o P o o S S S S S e e e e e s



Qualitative Comparison of Segmentation Results

LaGPS isolates only the violating pixels

not the entire person.
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Interpretability & Accountability

e Every pixel has a reason trace.
e Failures are classifiable: interpretation, primitives, or execution.

17



Visualization of Intermediate Steps in LaGPS
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Limitations

e Dependent on primitive detectors (YOLO, Sapiens, skin)
e Current grammar limited to coverage-style rules
e Ambiguous policies require interpretation

Modular desigh makes improvements practical and errors
diagnosable.
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Takeaway
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Ethics

Purpose is Transparent and Auditable Visual Grounding of
policies

x No Auto-enforcement or interpretations of Policy
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Beyond Human-centric

THE FOLLOWING PREVIEW HAS BEEN APPROVED FoR

APPROPRIATE AUDIENCES
8y THE MOTION PICTURE ASSOCIATION, Inc.
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PPE Compliance Lab Safety Moderation Policies

The architecture applies anywhere
formal textual constraints map to pixels.
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