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Introduction & Motivation

* The Global Crisis: Alzheimer’s Disease (AD) is a leading cause of dementia. Early detection via MRI
Is crucial for effective patient management.

* Deep Learning Promise: Convolutional Neural Networks (CNNs) excel at identifying pathological
changes in scans, but they require massive, diverse datasets to generalize well.

* The Bottleneck: Strict privacy regulations (HIPAA, GDPR) make centralized data collection illegal
or impractical, creating "Data Silos” that hinder Al progress.

* Our Objective: To develop AlzFed-XAl, a framework that enables collaborative learning across
Institutions without sharing patient data, while ensuring the results are explainable to clinicians.
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The Privacy Challenge in Medical Al

The Conflict

Deep Learning needs massive data, but privacy laws (HIPAA/GDPR) lock patient data in isolated hospitals ("Data Silos").

The Solution
Federated Learning. We bring the model to the data, not the data to the model.
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Figure: Proposed AlzNet-XAl Framework 2nd December, 2025
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FedNet: Engineered for
Efficiency

e The Model: A custom Lightweight CNN designed for edge devices.

e Key Stats: Only 378,780 parameters (vs. millions in standard models).

e Tech Stack: Uses Mobile Inverted Bottleneck (MBConv) and Depthwise

Separable Convolutions for speed without losing accuracy.

FedNet Architecture
Input Layer Stem Conv MBConv Blocks 1 MBConv Blocks 2 MBConv Blocks 3 MBConv Blocks 4 MEConv Blocks 5
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Figure: The architecture block diagram showing the flow from input MRI to the MBConv blocks and final classification head.
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Federated Optimization
Protocol

e Algorithm: Federated Averaging (FedAvqg).
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Figure: Training dynamics charts. The top line shows Global Accuracy rising
to 99%, while the bottom lines show local client losses decreasing

smoothly.
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Experimental Setup & Data

e Dataset: OASIS-1 MRI (Cross-sectional).
e Simulation: 5 distinct clients with non-overlapping data partitions.

e Environment: NVIDIA Tesla P100 GPU.

Class Distribution Across Datasets
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Figure: Bar charts showing the distribution of images across the 4 classes (Non-Demented, Very Mild, Mild, Moderate) for Train,

Validation, and Test sets.
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Near-Centralized
Performance

Table 1: Performance comparison of FedNet baseline and proposed AlzFed-XAl framework.

Model Test accuracy (%) Precision (macro)  Recall (macro) Fl-score (macro)
FedNet 00.9364 0.9980 (0.9997 .9988%
AlzFed-X Al 09,7281 0.9959 0.9982 0.9970

Impact: We achieved high privacy with a negligible performance drop (< 0.2%).

Robustness: The model handles class imbalance perfectly with a 0.997 F1-Score.
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Trust via Explainability
(Grad-CAM)

Original v
True: Mild Dementia

Pred: Mild Dementia GradCAM Heatmap |  The "Black Box" Problem: Doctors need to know why an Al made a

diagnosis.

e Our Solution: Gradient-weighted Class Activation Mapping (Grad-CAM).

e Clinical Validation: The model focuses on the Temporal and Parietal
lobes regions known to atrophy in Alzheimer’s proving it learns

biology, not noise.

Figure: Brain MRI scans overlaid with heatmaps. The red "hot spots” show

exactly which part of the brain the model looked at to detect dementia.
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Conclusion & Future Scope

Viability

Federated Learning is ready for

sensitive medical diagnostics.

~

Future;

Efficiency

High accuracy is possible on low-

resource hardware using FedNet.

~

J

Deploying on real-world, non-1ID data across different hospital scanner types.

4 N

Trust

Interpretability (XAl) is the key to

clinical adoption.

J
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Thank you
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