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Abstract

DeepLLR-CUSUM is a sequential change detection method that uses a
compact MLP to directly learn a discriminative log-likelihood ratio and plug
it into a CUSUM-style detector. On CESNET telemetry and SPY+VIX
financial data, DeepLLR-CUSUM achieves lower detection delay than
Gaussian and LSTM-based baselines at matched ARL, while remaining
computationally efficient and interpretable for online monitoring in site re-
liability engineering.

Highlights

▶ Lightweight MLP learns a log-likelihood ratio from whitened features
and integrates directly into the classical CUSUM framework.

▶ Provides principled ARL-controlled thresholds with matched-ARL eval-
uation on CESNET and SPY+VIX datasets.

▶ Produces interpretable per-sample log-evidence scores while remain-
ing computationally efficient for real-time SRE deployment.

Problem Setup & Background

Sequential change-point detection concerns a data stream {xt} that fol-
lows p0 until an unknown change time ν, after which it follows p1. The
objective is to raise an alarm quickly after ν while maintaining a large in-
control Average Run Length (ARL), which quantifies the expected time to
a false alarm under p0.
Classical CUSUM [3] uses the log-likelihood ratio (LLR)

ℓ(xt ) = log
p1(xt )
p0(xt )

,

updated recursively with an ARL-calibrated threshold. However, Gaus-
sian and other simple parametric assumptions often break down in high-
dimensional, non-Gaussian, and heavy-tailed telemetry streams [1].
DeepLLR–CUSUM addresses this limitation by learning a discriminative
approximation to the LLR via a lightweight neural model and inserting it
into the classical CUSUM recursion. This preserves likelihood-ratio opti-
mality, maintains explicit ARL control, and scales effectively to nonlinear
real-world data.

Methodology

DeepLLR trains a small MLP to estimate log-likelihood ratios from
whitened features. Pre-change DeepLLR scores determine the drift cor-
rection and the bootstrap-based ARL calibration through an empirical
MGF-root. The calibrated increments feed a classical CUSUM recur-
sion, producing a fast and interpretable sequential detector. The complete
pipeline is summarized in Fig. 1.

Fig. 1: DeepLLR-CUSUM pipeline: MLP-based LLR learning, drift adjust-
ment, ARL calibration, and CUSUM recursion.

DeepLLR-CUSUM Workflow & Calibration

Offline: Train & Calibrate
▶ Build whitened features from Xpre and Xpost.
▶ Train MLP on (y = 0) vs. (y = 1) to obtain s(x).
▶ Estimate scale λ via empirical MGF-root using Xpre.
▶ Block-bootstrap pre-change scores to choose τ s.t. ARL ≈ target.
Online: Sequential Monitoring
▶ Initialize Z0 = 0.
▶ For each new xt :

▶ Compute LLR s(xt ). Update Zt = max(0, Zt−1 + λs(xt )).
▶ If Zt ≥ τ : raise alarm.

Results and Discussion

Experimental Setup. DeepLLR–CUSUM is evaluated on the CESNET
network telemetry dataset [2], using controlled higher–order (shape
and dependence) post-change injections. Baselines include Gaus-
sian–CUSUM and LSTM–CUSUM, all calibrated to the same in-control
ARL using block-bootstrap methods.
Key Findings.
▶ Fastest detection: DeepLLR reaches the CUSUM threshold within

1–2 samples, ahead of Gaussian and significantly faster than LSTM
(see Fig. 2).

▶ Robustness: Learned LLR increments remain stable under heavy-
tailed distortions where Gaussian modeling deteriorates.

▶ Matched-ARL fairness: Delay improvements persist under equal
false-alarm budgets, as shown by RMST/EDD summaries in Fig. 3.

Fig. 2: Normalized CUSUM traces (Z/τ ) showing DeepLLR’s rapid
threshold crossing relative to Gaussian and LSTM.

Interpretability.
▶ Each score s(xt ) acts as a per-sample log-evidence ratio.
▶ Attribution analysis indicates variance and skewness features domi-

nate near true changes.

Fig. 3: Aggregate performance: (a) RMST, (b) EDD, (c)
DeepLLR–Gaussian delay differences, (d) ARL confidence intervals.

Practical Implication. DeepLLR–CUSUM jointly provides:
▶ near-instant detection,
▶ conservative false-alarm behavior, and
▶ interpretable evidence scoring,
making it suitable for real-time SRE and anomaly detection pipelines.
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