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Highlights

Lightweight MLP learns a log-likelihnood ratio from whitened features
and integrates directly into the classical CUSUM framework.

Provides principled ARL-controlled thresholds with matched-ARL eval-
uation on CESNET and SPY+VIX datasets.

Produces interpretable per-sample log-evidence scores while remain-
ing computationally efficient for real-time SRE deployment.

Problem Setup & Background

Sequential change-point detection concerns a data stream {x;} that fol-
lows pp until an unknown change time v, after which it follows p;. The
objective is to raise an alarm quickly after v while maintaining a large in-
control Average Run Length (ARL), which quantifies the expected time to
a false alarm under pg.

Classical CUSUM [3] uses the log-likelihood ratio (LLR)

0(x;) = log P (Xt),

Po(Xt)

updated recursively with an ARL-calibrated threshold. However, Gaus-
sian and other simple parametric assumptions often break down in high-
dimensional, non-Gaussian, and heavy-tailed telemetry streams [1].
DeepLLR-CUSUM addresses this limitation by learning a discriminative
approximation to the LLR via a lightweight neural model and inserting it
into the classical CUSUM recursion. This preserves likelihood-ratio opti-
mality, maintains explicit ARL control, and scales effectively to nonlinear
real-world data.

Methodology

DeepLLR trains a small MLP to estimate log-likelihood ratios from
whitened features. Pre-change DeeplLLR scores determine the drift cor-
rection and the bootstrap-based ARL calibration through an empirical
MGF-root. The calibrated increments feed a classical CUSUM recur-
sion, producing a fast and interpretable sequential detector. The complete
pipeline is summarized in Fig. 1.
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Fig. 1: DeepLLR-CUSUM pipeline: MLP-based LLR learning, drift adjust-
ment, ARL calibration, and CUSUM recursion.

DeepLLR-CUSUM Workflow & Calibration

Offline: Train & Calibrate
» Build whitened features from Xye and Xpost-
» Train MLP on (y = 0) vs. (y = 1) to obtain s(x).
» Estimate scale \ via empirical MGF-root using Xore.
» Block-bootstrap pre-change scores to choose 7 s.t. ARL ~ target.
Online: Sequential Monitoring
» Initialize Z; = 0.
» For each new x;:
» Compute LLR s(x;). Update Z; = max(0, Z;_1 + As(xt)).
» If £+ > 7:raise alarm.
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Abstract

DeepLLR-CUSUM is a sequential change detection method that uses a
compact MLP to directly learn a discriminative log-likelihood ratio and plug
it into a CUSUM-style detector. On CESNET telemetry and SPY+VIX
financial data, DeepLLR-CUSUM achieves lower detection delay than
Gaussian and LSTM-based baselines at matched ARL, while remaining
computationally efficient and interpretable for online monitoring in site re-
liability engineering.

Results and Discussion

Experimental Setup. DeepLLR-CUSUM is evaluated on the CESNET
network telemetry dataset [2], using controlled higher—order (shape
and dependence) post-change injections. Baselines include Gaus-
sian—CUSUM and LSTM-CUSUM, all calibrated to the same in-control
ARL using block-bootstrap methods.

Key Findings.

Fastest detection: DeeplLLR reaches the CUSUM threshold within
1-2 samples, ahead of Gaussian and significantly faster than LSTM
(see Fig. 2).

Robustness: Learned LLR increments remain stable under heavy-
tailed distortions where Gaussian modeling deteriorates.
Matched-ARL fairness: Delay improvements persist under equal
false-alarm budgets, as shown by RMST/EDD summaries in Fig. 3.
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Fig. 2: Normalized CUSUM traces (Z/7) showing DeepLLR’s rapid
threshold crossing relative to Gaussian and LSTM.

Interpretability.

» Each score s(x;) acts as a per-sample log-evidence ratio.

» Attribution analysis indicates variance and skewness features domi-
nate near true changes.
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Fig. 3: Aggregate performance: (a) RMST, (b) EDD,
DeepLLR—Gaussian delay differences, (d) ARL confidence intervals.
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Practical Implication. DeepLLR—CUSUM jointly provides:

» near-instant detection,

» conservative false-alarm behavior, and

» interpretable evidence scoring,

making it suitable for real-time SRE and anomaly detection pipelines.
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