BLISS: Bandit Layer Importance Sampling
Strategy for Efficient Training of GNN

Motivation: Overcoming the GNN
Scalability Bottleneck

Graph Neural Networks (GNNs) are powerful models for learning from
graph-structured data, but they struggle to scale to large graphs. The core
challenge is the "neighborhood explosion," where the number of nodes
required for message passing grows exponentially with network depth. This
creates prohibitive memory and computational costs, making full-batch
training infeasible. Efficient neighbor sampling is therefore essential.

 Node-wise Sampling (e.g., GraphSAGE): Samples neighbors for each
node individually. Can be redundant and computationally inefficient.

« Layer-wise Sampling (e.g., LADIES): Jointly samples a single set of
nodes at each layer. More efficient but existing methods use static
importance scores that don't adapt during training.

 Sub-graph Sampling (e.g., GraphSAINT): Trains on smaller induced
subgraphs. Risks losing crucial global context.

Background: Layer-wise Sampling

Layer-wise sampling methods aim to create an unbiased estimator for
neighborhood aggregation by sampling nodes across an entire layer. The
goal is to select the most informative nodes to minimize the variance of the
estimator, leading to more stable and accurate training. Our work, BLISS,
Introduces a dynamic approach to this paradigm.

Visual comparison of node-wise sampling (left), which can have high redundancy, versus layer-wise sampling
(right), which provides broader, more efficient coverage.

Muhammed Fatih Balin

Proposed Method: The BLISS Algorithm

BLISS frames neighbor selection as a multi-armed bandit problem where
each neighbor is an "arm." By balancing exploration (discovering new
informative nodes) and exploitation (sampling known important nodes),
BLISS dynamically learns the optimal sampling policy during training. The
core process is a four-step loop:

1. Select: Use the bandit policy to determine layer-wise node sampling
probabilities p;.

2. Aggregate: Perform GNN message passing using the sampled
neighbors.

3. Reward: Calculate a reward r;; based on a neighbor's contribution to the
node representation.

4. Update: Feed the reward back to the bandit (EXP3) to update the policy
for the next iteration.

Key Equations:

N
k
B =2 Ys i
s=1 'J*
2
a..
Tij k.‘éz Il hy 13
]

Node Classification F1-Score (%)

Omar Alsaqa, Thi Linh Hoang,

Dataset Sampler Test
GAT SAGE
citeseer BLISS 0.706 £ 0.002 0.580 £ 0.032
PLADIES | 0.683 £ 0.005 0.601 +0.017
cora BLISS 0.813 £0.004 0.795 +0.009
PLADIES | 0.809 =0.003 0.772 +0.014
flickr BLISS 0.511 £0.002 0.503 +0.002
PLADIES | 0.507 £ 0.005 0.505 + 0.001
pubmed BLISS 0.731 £0.007 0.597 £ 0.057
PLADIES | 0.718 £ 0.013 0.557 +£0.042
reddit BLISS 0.949 + 0.001 0.962 = 0.000
PLADIES | 0.950 £0.001 0.962 + 0.000
yelp BLISS 0.540 £ 0.002 0.529 +0.005
PLADIES | 0.539 £0.002 0.502 + 0.009

.-T“{
NEURAL INFORMATION
PROCESSING SYSTEMS

y

[Sta.rt: Initialize Bandit w;; — 1]
Main 'T‘raTniug Loop

I. Calculate g;; from w;; |<

1

Calculate sampling prob p;

1

Sample k nodes based on p;

'

NU

Sampled all layers?

II. GNN Forward Pass

l

III. Reward Calculation r;;

1

IV. Policy Update (EXP3)

!

No

Training Complete?

Yes |

[Eud: Trained Model]

References

Will Hamilton, et al. (2017). “Inductive representation learning on large graphs.”
In: Neural Information Processing Systems (NeurlPS).

Petar Velickovic, et al. (2018) “Graph attention networks”. In: 6th International
Conference on Learning Representations (ICLR).

Difan Zou, et al. (2019). “Layer-dependent importance sampling for training
deep and large graph convolutional networks”. In: Advances in neural
information processing systems 32.

Muhammed Fatih Balin, et al. (2023). “Layer-neighbor sampling — defusing
neighborhood explosion in gnns” In: Advances in Neural Information
Processing Systems, volume 36.

	Slide 1

