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Introduction & Motivation

Urban Land Cover (ULC) maps are crucial for planning, flood and heat-risk assessment, and envi-

ronmental monitoring. In manyworkflows, decisions are made from tabular features derived from

aerial/satellite imagery rather than raw images.

The ULC dataset we use provides such descriptors for nine land-cover classes (e.g., roads, trees,

grass, water) and exhibits common challenges:

High-dimensional, heterogeneous features (spectral, spatial, contextual).

Class imbalance between majority and minority classes.

Nonlinear interactions that simple linear models struggle to capture.

Classical ML (Logistic Regression, SVM, tree ensembles, GBDTs) is still the standard for tabular

ULC, while Tabular Deep Learning (TDL) models promise to better exploit complex interactions.

It remains unclear when the extra complexity of TDL is actually beneficial in practice.

Research Questions & Contributions

Research Questions

RQ1: How do strong classical ML methods compare to TDL models on the ULC dataset?

RQ2: How do class-imbalance handling and non-linear feature interactions affect this

comparison?

RQ3: What guidelines can we offer for choosing models in real-world ULC pipelines?

Contributions

Unified, reproducible benchmarking of classical ML and several TDL models on ULC.

Evaluation with accuracy and macro metrics to reveal per-class strengths/weaknesses.

Analysis of imbalance-aware TDL (e.g., class-weighted loss) leading to practical

recommendations for ULC practitioners.

Data & Experimental Setup

Dataset: UCI ULC with tabular descriptors derived from aerial imagery; nine land-cover

classes with mixed class frequencies.

Preprocessing: Standardization of continuous features; stratified train–validation–test splits

with repeated runs; class weights in the loss for TDL, standard settings for tree-based

models.

Evaluation: Overall accuracy as the main metric, with macro precision/recall/F1 and

confusion matrices to inspect per-class behaviour.

Methods Overview

Classical ML vs TDLModels

We train all models on the same ULC tabular features and splits to enable a fair comparison

between classical ML and TDL.

Classical ML: Logistic Regression, SVM, Decision Tree, kNN, Naive Bayes, Random Forest,

Gradient Boosting (GBM), AdaBoost, XGBoost, and CatBoost.

TDL:MLP, 1D CNN, and tabular-specific architectures (TabNet, FT-Transformer,

TabTransformer, TabSeq) trained with class-weighted cross-entropy.

Results: Overall Performance
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Figure 1. Model accuracies on the ULC test set with 95% binomial confidence intervals.

Table 1. Top 8 models on ULC (test set), sorted by test accuracy.

Model Test Acc. (%) Precision Recall F1 AUC

CatBoost 82.25 0.81 0.82 0.82 0.98
Random Forest 81.66 0.81 0.83 0.81 0.97
Naive Bayes 77.51 0.76 0.78 0.76 0.96
Decision Tree 74.75 0.72 0.75 0.73 0.96
TabTransformer 74.75 0.71 0.72 0.72 0.96
TabSeq 73.96 0.70 0.74 0.74 0.95
1D CNN 73.37 0.73 0.75 0.75 0.97
FT-Transformer 73.18 0.70 0.74 0.70 0.93
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Figure 2. (a) Top models: Precision/Recall/F1/AUC (b) Comparison of test accuracy across models.

Results: Deep Models & Class Imbalance
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Comparison of Test Accuracy Across Models with Weighted Cross-Entropy Loss

Figure 3. Test Accuracy of TDL models with (a) standard cross-entropy (b) class-weighted cross-entropy.

Table 2. TDL models trained with class-weighted cross-entropy on ULC.

Model Test Acc.(%) Precision Recall F1 AUC

1D CNN 73.18 0.70 0.74 0.71 0.94
TabNet 66.67 0.65 0.70 0.66 0.93
FT-Transformer 72.39 0.66 0.72 0.68 0.93
TabTransformer 73.37 0.69 0.72 0.71 0.96
TabSeq 73.57 0.70 0.74 0.71 0.95

Discussion & Practical Takeaways

Summary. On this ULC dataset, strong tree ensembles (especially CatBoost and Random For-

est) achieve the best overall accuracy, while modern TDL models are competitive but do not

consistently surpass classical methods.

Practical takeaways for ULC practitioners

Start with strong ensembles. Gradient boosting and related tree-based models remain

robust baselines for tabular remote sensing data, especially when data are limited and

moderately imbalanced.

Use TDL selectively. TDL models (TabTransformer, TabSeq, 1D CNN) can match the best

classical models while providing flexible feature representations, but require careful tuning

and regularization.

Handle imbalance explicitly. Class-weighted cross-entropy improves deep models on

minority classes but does not fully close the gap to the best tree ensembles, suggesting that

imbalance-aware design is still necessary.

Future work

Develop tabular transformer–style, remote sensing–specific TDL model that encodes

spectral–spatial structure, class hierarchies, and imbalance directly into the architecture.

Extend the study to larger multi-city ULC or related datasets and additional evaluation

criteria (e.g., calibration, fairness across land-cover types, and deployment robustness).
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