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Background

Al has shown growing potential in mental health care,
from detecting depression through language patterns
to assisting in clinical diagnostics

With the rise of LLMs, interest in Al-powered tools has
intensified across public and clinical domains

The mental health domain presents unique ethical
challenges due to sensitivity of data, cultural variability
In diagnosis, and high stakes of misinterpretation

Research Questions

RQ1: How can XAl methods be tailored to mental
health screening?

RQ2: What framework supports
deployment of Al in mental health?
RQ3: How should Al alignment be reframed beyond
'helpful, honest, and harmless’?

RQ4: What evaluation metrics capture human-
centered outcomes?

responsible

Contributions

This work bridges the gap between technical XAl tools
and the nuanced requirements of mental healthcare.
We provide a multi-pronged strategy for aligning XAl
systems with clinical and ethical priorities

A systematic synthesis of XAl methods tailored to
mental health, highlighting case-based reasoning,
Chain-Of-Thought (CoT) prompting, and retrieval-
augmented generation (RAG).

A strategic Dblueprint for responsible deployment
grounded in participatory co-design, human-centered
evaluation metrics, and the proposal of a “living bench-
mark” for mental health systems

A call to reframe Al alignment for mental health beyond
“helpful, honest, and harmless™ toward systems that are
empathetic, culturally aware, and accountable
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Proposed Framework:

.» Participatory Co-Design: Involve clinicians, patients and
marginalized communities in system development.

 Human-Centered Metrics: Prioritize comprehensibility, trust
calibration, and long-term impact over mere accuracy

.» Benchmarking for Inclusion: Address the lack of representative
datasets and culturally valid evaluation tools

* Living Benchmark: Introduce a dynamic benchmark that evolves
with real-world data and integrates fairness and robustness.
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Summary of Findings

Evolution of XAl in mental health traced from early feature
Importance scores (e.g., "hopeless” keyword detection) to
LLM-based context-rich explanations

Early approaches: Keyword identification

Current approaches: Clinically coherent explanations using
LLMs

Newer models go beyond interpretability—they build trust
by aligning with clinician reasoning and patient
understanding

Limitations and Conclusions

We identify open questions that must guide future research:e
How can trust in Al be treated as dynamic and socially
constructed?

« How can explanations support user agency rather than

dictate clinical meaning?
The future of Al in mental health depends on tools that don't
just “work” but that earn trust, respect complexity, and
amplify human judgment. This work lays the foundation fora
new generation of mental health Al—technically robust,
ethically sound, and aligned with the humanistic principles at
the heart of mental health care
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