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Abstract How LSFO Works Results
Individual fairness guarantees are often desirable properties to have, but they become hard to 103 ¢+
formalize when the dataset contains outliers. Here, we investigate the problem of developing 1. BaseCent (Initialization) Lp
an individually fair k-clustering algorithm for datasets that contain outliers. That is, given n ' : . : Z LSFO
points and k centers, we want that for each point which is not an outlier, there must be a Create anchor zones and discard fairness based outliers — -
center within % nearest neighbours of the given point. ‘ %
oy 2. ConstrainedLS++ (Refinement A 102}
Our Contributions ( | o 107
Improve centers per anchor zone 3
1. Novel center initialization algorithm, BaseCent, discards fairness-based outliers. ‘ S
2. Local search-based method for individually fair k-means with outliers. 3 Cost Based Outlier Removal 4
3. Bound on the number of outliers discarded. 0 ; t. . fy I " E 10! L
4. O(1) approximation to the (v, k, m)-fair clustering cost. O RIS B9 SigimcelEh IMPITOVS [SEMIEEINS Eos c
5. Empirical validation demonstrating scalability. [ —
Fair radius r(-) 4, an'ness Preserving Swaps _
Feasible swaps to reduce cost | ,
Radius of the ball containing the nearest n/k neighbours of a pointv € X. 10 20
. . . . : K
(v, k, m)- fair clustering excluding outliers { 5. Iterate steps 2 — 4 Until Convergence }
Given points X in a metric space (X, d), a k-clustering using S centers and m outliers is (v, k)- Lemmail Figure 1. Comparison of runtime for LP and LSFO algorithms at & = 10, 20. LSFO is over two orders of
fairif forallv e X \ Z, d(v, S) < vr(v), where Z is the outlier set (|Z| < m). Cost: magnitude faster than the LP-based approach.
| . Suppose n — m points are covered by k + r y-anchor zones (0 < r < m), with the m points | |
‘SK?‘IEKm Z d(v,u)” st d(v,S5) < y7(v) having the largest fair radii being discarded as fairness-based outliers. Then, there exists a set . e - o ! mm
— T veX\Zues of k 4'-anchor zones that covers n — 2m points, with v = v + 2. 500000 4

Approximation Guarantees

BaseCent Seeding Algorithm

LSFO achieves constant-factor approximation under relaxed radius v/ = v + 2. 100000 {

Algorithm 1 BaseCent
Input: X, 6(-),7 Bounding the Number of Outliers

Output: Anchor points Sy, fairness-based outliers 2
1. S+ O, L)+ T,5)« O

350000 A

The BaseCent algorithm first discards m fairness-based outliers. | | , , , ,
Figure 2. Results on the Covertype dataset with 100k points when outliers are discarded randomly vs outliers

2. whiledp € X : d(p,S) > vd(p) do During LSFO, thg objecﬁv¢ improves by at Ieast'a (1— %) facﬁor per iteration. computed using LSFO.
o p* < argmin{d(p!) : p' € {p € X | d(p,S) > v5(p)}} At most, m additional outliers can be discarded in each iteration.
4: S % S U {p*} 9 ThUS, aﬁer O (% 1Og(nA)) |terat—|ons (b) Cost vs k (b) Bound Ratio vs k —— (b) Runtime vs k
: . . . k 16000 —8— LSFO 90 7
5 end while | | | The total number of outliers is bounded by ||Z] < m + —— log(nA). 001
6. Discard the last m points as outliers; let Zy be discarded set € % 14000 { - 70 -
;; E}E?C% anchors be Srem Runtime Analysis - :
9. Let P = {Pi}irlem‘, each P; contains points assigned to anchor zone Sﬁem = BaseCent: O(ndk + nk2) 8000: : -\'\_ 30
1(1): for Zf):it;) ‘Srem‘ do = Constrained LS++: O(ncikQ log(nA)) 6 8 10 12 14 6 8 1 12 14 6 8 10 12 14
1 i
. . 9 . .
12: efn‘d for‘ . Swaps (LSFO): O(n k> perdllzgl’ahor? 72 Figure 3. Results on the Adult dataset with 40k points when outliers are discarded randomly vs outliers
13: If |Srem| > k then : n 9 n computed using LSFO.
4 for each a € X' do = Total LSFO Runtime O( = log=(nA) + log(nA))
15: for Z _ 1 tO ‘Srem‘ do 200000 - (@) Costvs k S— -~ (a) Bound Ratio vs k —— — (a) Runtime vs k
16 if d(a, St.) < (7 + 2)8(a) then Results 120000 | 20 T | . et
17: P’L < PZ U {a} ‘g 140000 - o é 1.81 o 5 1000 1 o
18: end if Table 1. : Comparison of cost, fairness bound ratio, and runtime for the Adult and Bank datasets (40K samples). 2 120000 1 g 161 g 800
16 end for The proposed LSFO method attains superior fairness and efficiency across all values of k. E 1:2222 - g 14 1 2 600: /
0. end for , oo — - 200
)1, X" X! Dataset & m k-meanscost p Time (sec) w00 | | . — | M= — = 0{ £ | .
22:  while X" £ & do 5 595 T755E+04 144 31 . k k
23: J ¢ arg max; |Pj N X" 10 707 457TE +04 1.22 2472 | | . | , , , ,
SN {Sj Adult 15 755 381E4+04 107 776 Figure ?‘ Res|u|ts ohn the Adult dataset with 1000 points showing cost, fairness ratio, and runtime comparison
24 0 0 ' ' across four algorithmes.
- X" XM\ Py 20 772 3.30E+04 1.07 1552 e
. Srem 4 Srem \ {S?em} 30 905 2.60E+04 105 3821 Observations
27: end while 5 463 1.82E+04 2.20 2429 . . | | . . |
s else 10 495 1.06E+04 1.59 8240 - BaseCent.inihalizahon effectively identifies fglmess—based ogthers: N |
20. Sy + Srem Bank 15 725 6.95E+03 1.29 2316.00 = LSFO achieves a lower k-means cost than prior methqu while maintaining fawngss. |
30 end if 20 647 6.06E +03 1.32 470.00 = The algorithm scales vvel.l to I.arge datasets, ou.tperformmg LP—bgsed approaches in runtime.
310 return Sy, Zg 30 828 4.66E +03 1.20 966.00 = Carefully discarding outliers improves both fairness and clustering quality.
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