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Abstract

Individual fairness guarantees are often desirable properties to have, but they become hard to

formalize when the dataset contains outliers. Here, we investigate the problem of developing

an individually fair k-clustering algorithm for datasets that contain outliers. That is, given n
points and k centers, we want that for each point which is not an outlier, there must be a

center within n
k nearest neighbours of the given point.

Our Contributions

1. Novel center initialization algorithm, BaseCent, discards fairness-based outliers.

2. Local search-based method for individually fair k-means with outliers.

3. Bound on the number of outliers discarded.

4. O(1) approximation to the (γ, k, m)-fair clustering cost.
5. Empirical validation demonstrating scalability.

Fair radius r(·)

Radius of the ball containing the nearest n/k neighbours of a point v ∈ X .

(γ, k, m)- fair clustering excluding outliers

Given points X in a metric space (X, d), a k-clustering using S centers and m outliers is (γ, k)-
fair if for all v ∈ X \ Z , d(v, S) ≤ γr(v), where Z is the outlier set (|Z| ≤ m). Cost:

min
|S|≤k,|Z|≤m

∑
v∈X\Z,u∈S

d(v, u)p s.t. d(v, S) ≤ γr(v)

BaseCent Seeding Algorithm

Algorithm 1 BaseCent

Input: X, δ(·), γ
Output: Anchor points S0, fairness-based outliers Z0
1: S ← ∅, Z0← ∅, S0← ∅
2: while ∃p ∈ X : d(p, S) > γδ(p) do
3: p∗← arg min{δ(p′) : p′ ∈ {p ∈ X | d(p, S) > γδ(p)}}
4: S ← S ∪ {p∗}
5: end while

6: Discard the last m points as outliers; let Z0 be discarded set

7: Let remaining anchors be Srem
8: X ′← X \ Z0
9: Let P = {Pi}

|Srem|
i=1 , each Pi contains points assigned to anchor zone Si

rem

10: for i = 1 to |Srem| do
11: Pi← ∅
12: end for

13: if |Srem| > k then

14: for each a ∈ X ′ do
15: for i = 1 to |Srem| do
16: if d(a, Si

rem) < (γ + 2)δ(a) then
17: Pi← Pi ∪ {a}
18: end if

19: end for

20: end for

21: X ′′← X ′

22: while X ′′ 6= ∅ do

23: j ← arg maxj |Pj ∩X ′′|
24: S0← S0 ∪ {S

j
rem}

25: X ′′← X ′′ \ Pj

26: Srem← Srem \ {Sj
rem}

27: end while

28: else

29: S0← Srem
30: end if

31: return S0, Z0

How LSFOWorks

1. BaseCent (Initialization)

Create anchor zones and discard fairness based outliers

2. ConstrainedLS++ (Refinement)

Improve centers per anchor zone

3. Cost Based Outlier Removal

Drop points to significantly improve k-means cost

4. Fairness Preserving Swaps

Feasible swaps to reduce cost

5. Iterate steps 2− 4 Until Convergence

Lemma 1

Suppose n −m points are covered by k + r γ-anchor zones (0 ≤ r ≤ m), with the m points

having the largest fair radii being discarded as fairness-based outliers. Then, there exists a set

of k γ′-anchor zones that covers n− 2m points, with γ′ = γ + 2.

Approximation Guarantees

LSFO achieves constant-factor approximation under relaxed radius γ′ = γ + 2.

Bounding the Number of Outliers

The BaseCent algorithm first discards m fairness-based outliers.

During LSFO, the objective improves by at least a (1− ε
k) factor per iteration.

At most, m additional outliers can be discarded in each iteration.

Thus, after O
(

k
ε log(n∆)

)
iterations.

The total number of outliers is bounded by |Z| ≤ m + mk

ε
log(n∆).

Runtime Analysis

BaseCent: O(ndk + nk2)
Constrained LS++: O

(
ndk2

ε log(n∆)
)

Swaps (LSFO): O(n2k) per iteration

Total LSFO Runtime O

(
ndk3

ε2 log2(n∆) + n2k2

ε
log(n∆)

)
Results

Table 1. : Comparison of cost, fairness bound ratio, and runtime for the Adult and Bank datasets (40K samples).

The proposed LSFO method attains superior fairness and efficiency across all values of k.

Dataset k m k-means cost ρ Time (sec)

Adult

5 595 7.55E + 04 1.44 31

10 707 4.57E + 04 1.22 242

15 755 3.81E + 04 1.07 776

20 772 3.30E + 04 1.07 1552

30 905 2.60E + 04 1.05 3821

Bank

5 463 1.82E + 04 2.20 24.29

10 495 1.06E + 04 1.59 82.40

15 725 6.95E + 03 1.29 316.00

20 647 6.06E + 03 1.32 470.00

30 828 4.66E + 03 1.20 966.00
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Figure 1. Comparison of runtime for LP and LSFO algorithms at k = 10, 20. LSFO is over two orders of

magnitude faster than the LP-based approach.
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Figure 2. Results on the Covertype dataset with 100k points when outliers are discarded randomly vs outliers

computed using LSFO.
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(b) Cost vs k
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(b) Bound Ratio vs k
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Figure 3. Results on the Adult dataset with 40k points when outliers are discarded randomly vs outliers

computed using LSFO.
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(a) Bound Ratio vs k
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Figure 4. Results on the Adult dataset with 1000 points showing cost, fairness ratio, and runtime comparison

across four algorithms.

Observations

BaseCent initialization effectively identifies fairness-based outliers.

LSFO achieves a lower k-means cost than prior methods while maintaining fairness.

The algorithm scales well to large datasets, outperforming LP-based approaches in runtime.

Carefully discarding outliers improves both fairness and clustering quality.
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