
DynaStride: Dynamic Stride Windowing with 
MMCoT for Multi-Scene Captioning

Eddison Pham1, Prisha Priyadarshini1, Adrian Maliackel1, Kanishk Bandi1, 
Cristian Meo1,2,3, Kevin Zhu1

Algoverse AI Research1, LatentWorlds AI2, Delft University of Technology3



Why Scene-Level Captioning?
• Instructional videos are widely used to teach complex tasks through step-by-step 
guidance. One way is to leverage deep learning models to generate scene-level captions 
(Narasimhan et al., 2023; Shi and Ji, 2019).

• The growth of AI/ML, particularly in LLMs and VLMs has allowed these scene captioning 
to be more effective in understanding visual cues and temporal progression (Elstad, 2024; 
Morales-Navarro and Kafai, 2024)

• Captioning videos improves accessibility for visually impaired, efficiency in indexing and 
content summarization (Gernsbacher, 2015).

• Recent empirical studies show that inclusion of automated captioning educational videos 
improve video comprehension, satisfaction, and listening performance (Malakul and Park, 
2023; Alabsi, 2020).



Limitations of current captioning approaches

• Redundancy vs. brevity: Dense captions include irrelevant details, while shorter 
captions miss key actions or temporal relations (Chai et al., 2024; Yang et al., 2023; Tang 
et al., 2025).

• Scalability and reproducibility: Reliance on localized inference tools limits 
performance on long or complex instructional videos (Chai et al., 2024).

• Need for context-aware modeling: Current methods struggle to capture essential 
actions, objects, and correct event sequences. 



High-level Overview of Our Methodology

(1) Sampling and windowing frames in each scene
(2) Leveraging VLM + MMCoT to generate subcaptions
(3) Dynamic stride windowing to skip content-redundant windows
(4) Subcaption aggregation

(2) and (3) works together



Step 1: Frame Sampling

Scene as frame sequence: Each scene is represented as an 
ordered sequence of frames.

Subsampling for efficiency: Only every M-th frame (specified 
in paper) is selected to reduce computational cost.

Sliding windows: K-sized window of frames capture 
short-term temporal dynamics.

Focus on local patterns: Windowing allows precise feature 
extraction while avoiding processing similar frames 
unnecessarily.



Step 2: MMCoT Subcaptions

Temporal context via wide-frame input: Concatenate 
frames within each window into a single wide image so 
the model sees multiple frames at once.

Subcaption generation: We leverage Qwen3 to generate 
action-objects description pairs of the form “[action] | 
[objects]”  for the current and candidate window.

Multimodal CoT: Encourages the model to understand 
both temporal dynamics and semantic content, reducing 
the extraction of irrelevant actions or objects by 
leveraging local context within each window.



Step 3: Dynamic Stride Window Selection 

Embedding-based comparison: Compute embeddings 
of subcaptions with MiniLM embedder.

Similarity threshold: If a candidate window is too 
similar to the previous one, it is skipped to avoid 
redundancy.

Dynamic stride: After skipping high similarity windows 
we scale the stride for upcoming windows. Repeat until 
end of video or dissimilarity detected → reset the 
stride scaling variable.



Step 4: Subcaption Aggregation

The first selected subcaption per scene is the first window. 
Every subcaption afterwards are chosen via the Dynamic 
Stride Window algorithm.

Combine retained subcaptions: Concatenate selected 
subcaptions into a single input for the aggregation model.

Generate final caption: Use a Qwen3-4B-Instruct model 
to produce a coherent instructional caption for the entire 
scene.



Experiments and Datasets

• Dataset: YouCookII (uniformly sampled 210 videos from validation set)

• No Training/Fine-tuning Involved: The pipeline solely leverages pretrained models

•  Baselines: GPT-4o, Video-LLaMA3

•  Subcaption Aggregators: Qwen3, Phi-3, Mistral

•  Metrics: BLEU-4, METEOR, CIDEr, BERTScore, SBERT (3 seeds)

Research Questions:

- RQ 1: To what extent does our method improve the coherence and meaningfulness 
of the inferred scene captions?

- RQ 2: How does the frame sampling and aggregator impact overall caption quality?



Main Experiment 

DynaStride achieves the highest CIDEr and semantic metrics compared to baselines.
- Outperforms GPT-4o in CIDEr, BERT Precision, BERT F1, and SBERT
- Outperforms VLLaMA-3 in ALL metrics.



Ablation Results

Sparse sampling boosts caption quality and aggregator choice impacts consistency.
- DynaStride benefits from sparser sampling, with 20–40 frames yielding the highest 
CIDEr, F1, and SBERT similarity.
- Qwen3 produces the most consistent and accurate captions, while other aggregators like 
Phi show much higher variability.



Limitations

• Dependence on pretrained models: Reliance on pre-train models may limit generalization 
beyond the YouCookII domain.

• Dataset constraints: YouCookII is relatively small and may not represent the full diversity of 
instructional tasks, limiting applicability to other domains or complex workflows.

• Dynamic frame sampling trade-offs: While efficient, it may miss subtle or rapid actions, 
producing incomplete, ambiguous, or temporally inconsistent subcaptions.

• Subcaption aggregation issues:  The dynamic stride algorithm reduces redundancy but may 
not fully prevent coherence or clarity issues in the final scene-level captions.

• Lack of adaptation or feedback mechanisms: No domain adaptation or human feedback is 
incorporated, limiting continuous improvement or personalization for diverse learners.



Possible Future Directions

● Extend DynaStride to raw, unsegmented videos using robust scene boundary 
detection (e.g., temporal action detection, weakly supervised segmentation).

● Expand to diverse instructional domains beyond YouCookII for broader 
generalization. 

● Experiment with fine-tuning the VLM or Aggregator models to better align the 
captions to domain specific tasks.

● Incorporate human evaluations to assess practical usefulness and educational impact. 



Thank you for Listening!


